zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. (English) Zbl 1198.34132
Summary: Oscillation criteria are established for second order nonlinear neutral differential equations with deviating arguments of the form (r(t)|z ' (t)) α-1 z ' (t)) ' +f(t,x[σ(t)])=0,tt 0 where α>0 and z(t)=x(t)+p(t)x[τ(t)]. Our results improve and extend some known results in the literature. Some illustrating examples are also provided to show the importance of our results.
MSC:
34K11Oscillation theory of functional-differential equations
34K40Neutral functional-differential equations
References:
[1]Hale, J. K.: Theory of functional differential equations, (1977)
[2]Agarwal, R. P.; Shieh, S. L.; Yeh, C. C.: Oscillation criteria for second order retarded differential equations, Math. comput. Modelling 26, 1-11 (1997) · Zbl 0902.34061 · doi:10.1016/S0895-7177(97)00141-6
[3]Džurina, J.; Stavroulakis, I. P.: Oscillation criteria for second-order delay differential equations, Appl. math. Comput. 140, 445-453 (2003) · Zbl 1043.34071 · doi:10.1016/S0096-3003(02)00243-6
[4]Elbert, Á.: A half-linear second order differential equation, , 153-180 (1979) · Zbl 0511.34006
[5]Elbert, Á.: Oscillation and nonoscillation theorems for some nonlinear differential equations, Lecture notes in mathematics 964, 187-212 (1982) · Zbl 0528.34034
[6]Grammatikopoulos, M. K.; Ladas, G.; Meimaridou, A.: Oscillation of second order neutral delay differential equations, Radovi. matematicki. 1, 267-274 (1985) · Zbl 0581.34051
[7]Hsu, H. B.; Yeh, C. C.: Oscillation theorems for second order half linear differential equations, Appl. math. Lett. 9, 71-77 (1996) · Zbl 0877.34027 · doi:10.1016/0893-9659(96)00097-3
[8]Kong, Q.: Interval criteria for oscillation of second order linear ordinary differential equations, J. math. Anal. appl. 229, 258-270 (1999) · Zbl 0924.34026 · doi:10.1006/jmaa.1998.6159
[9]Kusano, T.; Naito, Y.: Oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta math. Hungar. 76, 81-99 (1997) · Zbl 0906.34024 · doi:10.1007/BF02907054
[10]Kusano, T.; Naito, Y.; Ogata, A.: Strong oscillation and nonoscillation of quasilinear differential equations of second order, Differential equations dynam. Systems 2, 1-10 (1994) · Zbl 0869.34031
[11]Kusano, T.; Yoshida, N.: Nonoscillation theorems for a class of quasilinear differential equations of second order, J. math. Anal. appl. 189, 115-127 (1995) · Zbl 0823.34039 · doi:10.1006/jmaa.1995.1007
[12]Li, H. J.; Liu, W. L.: Oscillation of second order neutral differential equations, Math. comput. Modelling 22, 45-53 (1995)
[13]Liu, L.; Bai, Y.: New oscillation criteria for second-order nonlinear neutral delay differential equations, J. comput. Appl. math. 231, 657-663 (2009) · Zbl 1175.34087 · doi:10.1016/j.cam.2009.04.009
[14]Li, W. T.: Interval oscillation of second-order half-linear functional differential equations, Appl. math. Comput. 155, 451-468 (2004) · Zbl 1061.34048 · doi:10.1016/S0096-3003(03)00790-2
[15]Mirzov, D. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems, J. math. Anal. appl. 53, 18-425 (1976) · Zbl 0327.34027 · doi:10.1016/0022-247X(76)90120-7
[16]Manojlović, J. V.: Oscillation criteria for second-order half-linear differential equations, Math. comput. Modelling 30, 109-119 (1999) · Zbl 1042.34532 · doi:10.1016/S0895-7177(99)00151-X
[17]Philos, Ch.G.: Oscillation theorems for linear differential equations of second order, Arch. math. 53, 482-492 (1989) · Zbl 0661.34030 · doi:10.1007/BF01324723
[18]Sun, Y. G.; Meng, F. W.: Note on the paper of džurina and stavroulakis, Appl. math. Comput. 174, 1634-1641 (2006) · Zbl 1096.34048 · doi:10.1016/j.amc.2005.07.008
[19]Xu, R.; Meng, F.: Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. math. Comput. 182, 797-803 (2006) · Zbl 1115.34341 · doi:10.1016/j.amc.2006.04.042
[20]Xu, R.; Meng, F.: Oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. math. Comput. 192, 216-222 (2007) · Zbl 1193.34137 · doi:10.1016/j.amc.2007.01.108