zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On exponential stability results for fuzzy impulsive neural networks. (English) Zbl 1198.34160
Summary: Complex nonlinear systems can be represented as a set of linear sub-models by using fuzzy sets and fuzzy reasoning via ordinary Takagi-Sugeno (TS) fuzzy models. In this paper, the exponential stability of TS fuzzy neural networks with impulsive effect and time-varying delays is investigated. The model for fuzzy impulsive neural networks with time-varying delays is first established as a modified TS fuzzy model in which the consequent parts are composed of a set of impulsive neural networks with time-varying delays. Secondly, the exponential stability for fuzzy impulsive neural networks is presented by utilizing the Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) approach. In addition, two numerical examples are provided to illustrate the applicability of the result using LMI control toolbox in MATLAB.
MSC:
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
34K36Fuzzy functional-differential equations
34K45Functional-differential equations with impulses
References:
[1]Forti, M.; Tesi, A.: New conditions for global stability of neural networks with application to linear and quadratic programming problems, IEEE trans. Circuits syst. I 42, 354-366 (1995) · Zbl 0849.68105 · doi:10.1109/81.401145
[2]Kennedy, M. P.; Chua, L. O.: Neural networks for non-linear programming, IEEE trans. Circuits syst. 35, 554-562 (1988)
[3]Xu, D.; Yang, Zh.Ch.: Impulsive delay differential inequality and stability of neural networks, J. math. Anal. appl. 305, 107-120 (2005) · Zbl 1091.34046 · doi:10.1016/j.jmaa.2004.10.040
[4]Yang, Zh.Ch.; Xu, D.: Stability analysis of delay neural networks with impulsive effects, IEEE trans. Circuits syst. II express briefs 52, 517-521 (2005)
[5]Long, S.; Xu, D.: Delay-dependent stability analysis for impulsive neural networks with time varying delays, Neurocomputing 71, 1741-1747 (2008)
[6]Guan, Z. H.; Lam, J.; Chen, G.: On impulsive autoassociative neural networks, Neural networks 13, 63-69 (2000)
[7]Rakkiyappan, R.; Balasubramaniam, P.; Cao, J.: Global exponential stability results for neutral-type impulsive neural networks, Nonlinear anal. RWA 11, 122-130 (2010) · Zbl 1186.34101 · doi:10.1016/j.nonrwa.2008.10.050
[8]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[9]Zhang, Y.; Sun, J. T.: Boundedness of the solutions of impulsive differential systems with time-varying delay, Appl. math. Comput. 154, 279-288 (2004) · Zbl 1062.34091 · doi:10.1016/S0096-3003(03)00712-4
[10]Akhmetov, M. U.; Zafer, A.: Stability of the zero solution of impulsive differential equation by the Lyapunov second method, J. math. Anal. appl. 248, 69-82 (2000) · Zbl 0965.34007 · doi:10.1006/jmaa.2000.6864
[11]Liu, X. Zh.; Ballinger, G.: Boundedness for impulsive delay differential equations and applications to population growth models, Nonlinear anal. 53, 1041-1062 (2003) · Zbl 1037.34061 · doi:10.1016/S0362-546X(03)00041-5
[12]Cao, Y. Y.; Frank, P. M.: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach, IEEE trans. Fuzzy syst. 8, 200-211 (2000)
[13]Cao, Y. Y.; Frank, P. M.: Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi – sugeno fuzzy models, Fuzzy sets and systems 124, 213-229 (2001) · Zbl 1002.93051 · doi:10.1016/S0165-0114(00)00120-2
[14]Lee, K. R.; Kim, J. H.; Jeung, E. T.; Park, H. B.: Output feedback H control of uncertain fuzzy dynamic systems with time-varying delay, IEEE trans. Fuzzy syst. 8, 657-664 (2000)
[15]Zhang, Y.; Heng, P. A.: Stability of fuzzy control systems with bounded uncertain delays, IEEE trans. Fuzzy syst. 10, 92-97 (2002) · Zbl 1142.93377 · doi:10.1109/91.983283
[16]Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its application to modeling and control, IEEE trans. Syst. man cybern. 15, 116-132 (1985) · Zbl 0576.93021
[17]Yoneyama, J.: New delay-dependent approach to robust stability and stabilization for Takagi – sugeno fuzzy time-delay systems, Fuzzy sets and systems 158, 2225-2237 (2007) · Zbl 1122.93050 · doi:10.1016/j.fss.2007.03.022
[18]Chen, B.; Liu, X.; Tong, S.: New delay-dependent stabilization conditions of T – S fuzzy systems with constant delay, Fuzzy sets and systems 158, 2209-2224 (2007) · Zbl 1122.93048 · doi:10.1016/j.fss.2007.02.018
[19]Lin, C.; Wang, Q. G.; Lee, T. H.: Delay dependent LMI conditions for stability and stabilization of T – S fuzzy systems with bounded time-delays, Fuzzy sets and systems 157, 1229-1247 (2006) · Zbl 1090.93024 · doi:10.1016/j.fss.2005.10.001
[20]Yoneyama, J.: Robust stability and stabilization for uncertain Takagi – sugeno fuzzy time-delay systems, Fuzzy sets and systems 158, 115-134 (2008) · Zbl 1110.93033 · doi:10.1016/j.fss.2006.09.004
[21]Chen, B.; Liu, X.; Tong, S.: Delay-dependent stability analysis and control synthesis of fuzzy dynamic systems with time-delay, Fuzzy sets and systems 157, 2224-2240 (2006) · Zbl 1106.93046 · doi:10.1016/j.fss.2006.01.010
[22]Tian, E.; Peng, C.: Delay-dependent stability analysis and synthesis of uncertain T – S fuzzy systems with time-varying delay, Fuzzy sets and systems 157, 544-559 (2006) · Zbl 1082.93031 · doi:10.1016/j.fss.2005.06.022
[23]Hale, J. K.: Theory of functional differential equations, (1977)
[24]Lin, F. J.; Wai, R. J.: Robust recurrent fuzzy neural network control for linear synchronous motor drive system, Neurocomputing 50, 365-390 (2003) · Zbl 1006.68824 · doi:10.1016/S0925-2312(02)00572-6
[25]Huang, T. W.: Exponential stability of fuzzy cellular neural networks with distributed delays, Phys. lett. A 351, 48-52 (2006)
[26]Liu, Y. Q.; Tang, W. S.: Exponential stability of fuzzy cellular neural networks with constant and time-varying delays, Phys. lett. A 323, 224-233 (2004) · Zbl 1118.81400 · doi:10.1016/j.physleta.2004.01.064
[27]Yuan, K.; Cao, J.; Deng, J. M.: Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays, Neurocomputing 69, 1619-1627 (2006)
[28]Lou, X.; Cui, B.: Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays, Fuzzy sets and systems 158, 2746-2756 (2007) · Zbl 1133.93366 · doi:10.1016/j.fss.2007.07.015
[29]Ali, M. Syed; Balasubramaniam, P.: Exponential stability of uncertain stochastic fuzzy BAM neural networks with time-varying delays, Neurocomputing 72, 1347-1354 (2009)
[30]Li, H.; Chen, B.; Zhou, Q.; Qian, W.: Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters, IEEE trans. Syst. man cybernet. 39, 94-102 (2009)
[31]Huang, H.; Ho, D. W. C.; Lam, J.: Stochastic stability analysis of fuzzy Hopfield neural networks with time varying delays, IEEE trans. Circuits syst. II 52, 251-255 (2005)
[32]Song, Q.; Cao, J.: Dynamical behaviors of discrete-time fuzzy cellular neural networks with variable delays and impulses, J. franklin inst. 345, 39-59 (2008) · Zbl 1167.93369 · doi:10.1016/j.jfranklin.2007.06.001
[33]Song, Q.; Cao, J.: Impulsive effects on stability of fuzzy Cohen – Grossberg neural networks with time-varying delays, IEEE trans. Syst. man cybern. Part B 37, 733-741 (2007)
[34]Liu, M.: Delayed standard neural network models for control systems, IEEE trans. Neural networks 18, 1376-1391 (2007)
[35]Guan, Z. -H.; Chen, G.: On delayed impulsive Hopfield neural networks, Neural networks 12, 273-280 (1999)
[36]Berman, A.; Plemmons, R. J.: Nonnegative matrices in mathematical sciences, (1979) · Zbl 0484.15016
[37]Gu, K. Q.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003)
[38]Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide, (1995)