zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global asymptotic stability of stochastic BAM neural networks with distributed delays and reaction-diffusion terms. (English) Zbl 1198.35025
Summary: This paper is concerned with global asymptotic stability of a class of reaction-diffusion stochastic bi-directional associative memory (BAM) neural networks with discrete and distributed delays. Based on suitable assumptions, we apply the linear matrix inequality method to propose some new sufficient stability conditions for reaction-diffusion stochastic BAM neural networks with discrete and distributed delays. The obtained results are easy to check and improve upon the existing stability results. An example is also given to demonstrate the effectiveness of the obtained results.
35B35Stability of solutions of PDE
35K57Reaction-diffusion equations
60H15Stochastic partial differential equations
35R10Partial functional-differential equations
35R60PDEs with randomness, stochastic PDE
60H35Computational methods for stochastic equations