zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability criteria for impulsive reaction-diffusion Cohen-Grossberg neural networks with time-varying delays. (English) Zbl 1198.35033
Summary: This paper studies impulsive reaction-diffusion Cohen-Grossberg neural networks with time-varying delays and Neumann boundary conditions. By employing the topological degree theory, delay differential inequality with impulses, linear matrix inequality (LMI) and Poincaré inequality, a set of sufficient conditions are derived to ensure the existence, uniqueness and global exponential stability of the equilibrium point. These global exponential stability conditions depend on the reaction-diffusion term. A comparison between our results and the previous results shows that our results establish a new set of stability criteria for reaction-diffusion neural networks and have improved the previous results.
MSC:
35B40Asymptotic behavior of solutions of PDE
35R10Partial functional-differential equations
35K57Reaction-diffusion equations
92B20General theory of neural networks (mathematical biology)
References:
[1]Cohen, M.; Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE trans. Syst. man cybern. 13, 815-826 (1983) · Zbl 0553.92009
[2]Cao, J.; Liang, L.: Boundedness and stability for Cohen–Grossberg neural network with time-varying delays, J. math. Anal. appl. 296, 665-685 (2004) · Zbl 1044.92001 · doi:10.1016/j.jmaa.2004.04.039
[3]Cao, J.; Wang, J.: Globally exponentially stability and periodicity of recurrent neural networks with time delays, IEEE trans. Circuits syst. I 52, 920-931 (2005)
[4]Liu, X. Z.: Stability results for impulsive differential systems with applications to population growth models, Dyn. stab. Syst. 9, No. 2, 163-174 (1994) · Zbl 0808.34056 · doi:10.1080/02681119408806175
[5]Liu, X. Z.; Wang, Q.: Impulsive stabilization of high-order Hopfield-type neural networks with time-varying delays, IEEE trans. Neural netw. 19, 71-79 (2008)
[6]Yang, Z.; Xu, D.: Impulsive effects on stability of Cohen–Grossberg neural networks with variable delays, Appl. math. Comput. 177, 63-78 (2006) · Zbl 1103.34067 · doi:10.1016/j.amc.2005.10.032
[7]Arik, S.; Orman, Z.: Global stability analysis of Cohen–Grossberg neural networks with time varying delays, Phys. lett. A 341, 410-421 (2005) · Zbl 1171.37337 · doi:10.1016/j.physleta.2005.04.095
[8]Chen, Z.; Ruan, J.: Global dynamic analysis of general Cohen–Grossberg neural networks with impulse, Chaos solitons fractals 32, 1830-1837 (2007) · Zbl 1142.34045 · doi:10.1016/j.chaos.2005.12.018
[9]Huang, T.; Li, C.; Chen, G.: Stability of Cohen–Grossberg neural networks with unbounded distributed delays, Chaos solitons fractals 34, 992-996 (2007) · Zbl 1137.34351 · doi:10.1016/j.chaos.2006.04.008
[10]Liang, J.; Cao, J.: Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays, Phys. lett. A 314, 434-442 (2003) · Zbl 1052.82023 · doi:10.1016/S0375-9601(03)00945-9
[11]Liao, X.; Li, C.; Wang, K.: Criteria for exponential stability of Cohen–Grossberg neural networks, Neural netw. 17, 1401-1414 (2004) · Zbl 1073.68073 · doi:10.1016/j.neunet.2004.08.007
[12]Song, Q.; Zhang, J.: Global exponential stability of impulsive Cohen–Grossberg neural network with time-varying delays, Nonlinear anal. RWA 9, 500-510 (2008) · Zbl 1142.34046 · doi:10.1016/j.nonrwa.2006.11.015
[13]Wan, L.; Zhou, Q.: Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays, Phys. lett. A 370, 423-432 (2007)
[14]Zhang, J.; Suda, Y.; Komine, H.: Global exponential stability of Cohen–Grossberg neural networks with variable delays, Phys. lett. A 338, 44-50 (2005) · Zbl 1136.34347 · doi:10.1016/j.physleta.2005.02.005
[15]Zhou, Q.; Wan, L.; Sun, J.: Exponential stability of reaction-diffusion generalized Cohen–Grossberg neural networks with time-varying delays, Chaos solitons fractals 32, 1713-1719 (2007) · Zbl 1132.35309 · doi:10.1016/j.chaos.2005.12.003
[16]Li, K.; Song, Q.: Exponential stability of impulsive Cohen–Grossberg neural networks with time-varying delays and reaction-diffusion terms, Neurocomputing 72, 231-240 (2008)
[17]Liu, P.; Yi, F.; Yang, J.: Analysis on global exponential robust stability of reaction-diffusion neural networks with S-type distributed delays, Physica D 237, 475-485 (2008) · Zbl 1139.35361 · doi:10.1016/j.physd.2007.09.014
[18]Lou, X.; Cui, B.: Boundedness and exponential stability for nonautonomous cellular neural networks with reaction-diffusion terms, Chaos solitons fractals 33, 653-662 (2007) · Zbl 1133.35386 · doi:10.1016/j.chaos.2006.01.044
[19]Lu, J.: Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions, Chaos solitons fractals 35, 116-125 (2008) · Zbl 1134.35066 · doi:10.1016/j.chaos.2007.05.002
[20]Lv, Y.; Lv, W.; Sun, J.: Convergence dynamics of stochastic reaction-diffusion recurrent neural networks with continuously distributed delays, Nonlinear anal. RWA 9, 1590-1606 (2008) · Zbl 1154.35385 · doi:10.1016/j.nonrwa.2007.04.003
[21]Qiu, J.: Exponential stability of impulsive neural networks with time-varying delays and reaction-diffusion terms, Neurocomputing 70, 1102-1108 (2007)
[22]Wang, L.; Gao, Y.: Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays, Phys. lett. A 350, 342-348 (2006) · Zbl 1195.35179 · doi:10.1016/j.physleta.2005.10.031
[23]Zhao, H.; Wang, K.: Dynamical behaviors of Cohen–Grossberg neural networks with delays and reaction-diffusion terms, Neurocomputing 70, 536-543 (2006)
[24]Temam, R.: Infinite dimensional dynamical systems in mechanics and physics, (1998)
[25]Ye, Q.; Li, Z.: Introduction of reaction–diffusion equation, (1999)
[26]Yue, D.; Xu, S.; Liu, Y.: Differential inequality with delay and impulse and its applications to design robust control, Control theory appl. 16, No. 4, 519-524 (1999) · Zbl 0995.93063
[27]Cronin-Scanlon, J.: Fixed points and topological degree in nonlinear analysis, Math. surveys 11 (1964) · Zbl 0117.34803