zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An analysis of a predator-prey model with both diffusion and migration. (English) Zbl 1198.35124
Summary: An analysis of a reaction-diffusion-migration model of the interaction between prey and predator is presented. I give the analysis of dispersal relation of wave behavior in detail. Moreover, wave number against frequency for different values is given by means of both numerical simulation and nonlinear analysis for derivation of the phase equation. The obtained results show that numerical simulations are in agreement with mathematical analysis.
MSC:
35K57Reaction-diffusion equations
92D25Population dynamics (general)
35Q92PDEs in connection with biology and other natural sciences
Software:
xmds
References:
[1]Baurmann, M.; Gross, T.; Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations, J. theoret. Biol. 245, 220-229 (2007)
[2]Medvinsky, A. B.: Spatio-temporal complexity of plankton and fish dynamics in simple model ecosystems, SIAM rev. 44, 311-370 (2002)
[3]Okubo, A.: Diffusion and ecological problems: modern perspective. Interdisciplinary applied mathematics, Diffusion and ecological problems: modern perspective. Interdisciplinary applied mathematics 14 (2001)
[4]Pascual, M.: Diffusion-induced chaos in a spatial predator–prey system, Proc. R. Soc. B 25, 1-7 (1993)
[5]Petrovskii, S. V.; Morozov, A. Y.; Venturino, E.: Allee effect makes possible patchy invasion in a predator–prey system, Ecol. lett. 5, 345-352 (2002)
[6]Sherratt, J. A.: Periodic travelling waves in cyclic predator–prey systems, Ecol. lett. 4, 30-37 (2001)
[7]Sherratt, J. A.; Lewis, M. A.; Fowler, A. C.: Ecological chaos in the wake of invasion, Proc. natl. Acad. sci. USA 92, 2524-2528 (1995) · Zbl 0819.92024 · doi:10.1073/pnas.92.7.2524
[8]Sherratt, J. A.; Eagan, B. T.; Lewis, M. A.: Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality?, Phil. trans. R. soc. B 352, 21-38 (1997)
[9]Murray, J. D.: Mathematical biology I: An introduction, (2002)
[10]Brindley, J.; Biktashev, V. N.; Tsyganov, M. A.: Invasion waves in populations with excitable dynamics, Biol. inv. 7, 807-816 (2005)
[11]Garvie, M. R.: Finite difference schemes for reaction-diffusion equations modeling predator–prey interactions in Matlab, Bull. math. Biol. 69, 931-956 (2007)
[12]Gurney, W. S. C.: Circles and spirals: population persistence in a spatially explicit predator–prey model, Ecology 79, 2516-2530 (1998)
[13]Morozov, A. Y.; Petrovskii, S. V.; Li, B. -L.: Bifurcations and chaos in a predator–prey system with the allee effect, Proc. R. Soc. B 271, 1407-1414 (2004)
[14]Sun, G. Q.: Dynamical complexity of a spatial predator–prey model with migration, Ecol. model. 219, 248-255 (2008)
[15]Sun, G. Q.: Spatial pattern in a predator–prey system with both self- and cross-diffusion, Internat. J. Modern phys. B 20, 71 (2009) · Zbl 1155.35476 · doi:10.1142/S0129183109013467
[16]Freedman, H. I.: Deterministic mathematical models in population ecology, (1980)
[17]Chaudhuri, K.: Dynamic optimization of combined harvesting of a two-species fishery, Ecol. model. 41, 17-25 (1988)
[18]Sun, G. -Q.: Chaos induced by breakup of waves in a spatial epidemic model with nonlinear incidence rate, J. stat. Mech. theory exp. (2008)
[19]Sun, G.: Pattern formation in a spatial S–I model with nonlinear incidence rates, J. stat. Mech. theory exp. (2007)
[20]Collecutt, G.; Drummond, P. D.: Xmds: extensible multi-dimensional simulator, Comput. phys. Comm. 142, 219-223 (2001) · Zbl 0991.65508 · doi:10.1016/S0010-4655(01)00309-5
[21]P.T. Cochrane, et al. Xmds: An open source numerical simulation package. Version 1.6.4, 2008. www.xmds.org
[22]Kuramoto, Y.; Tsuzuki, T.: Formation of dissipative structures in reaction-diffusion systems-reductive perturbation approach, Progr. theoret. Phys. 54, 687-699 (1975)
[23]Yamada, H.: Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold, J. math. Biol. 54, 745-760 (2007) · Zbl 1145.92013 · doi:10.1007/s00285-006-0067-1
[24]Ortoleva, P.; Ross, J.: Phase waves in oscillatory chemical reactions, J. chem. Phys. 58, 5673-5680 (1973)
[25]Kuramoto, Y.; Yamada, T.: Pattern formation in oscillatory chemical-reactions, Progr. theoret. Phys. 56, 724-740 (1976)
[26]Ortoleva, P.: Local phase and renormalized frequency in inhomogeneous chemioscillations, J. chem. Phys. 64, 1395-1406 (1976)
[27]Ortoleva, P.; Ross, J.: On a variety of wave phenomena in chemical-reactions, J. chem. Phys. 60, 5090-5107 (1974)
[28]Aliev, R. R.: Oscillation phase dynamics in the Belousov–Zhabotinsky reaction-implementation to image-processing, J. phys. Chem. 98, 3999-4002 (1994)
[29]Aliev, R. R.; Biktashev, V. N.: Dynamics of the oscillation phase distribution in the BZ reaction, J. phys. Chem. 98, 9676-9681 (1994)