zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-integrable variants of Boussinesq equation with two solitons. (English) Zbl 1198.35242
Summary: Three variants of the Boussinesq equation, namely, the (2 + 1)-dimensional Boussinesq equation, the (3 + 1)-dimensional Boussinesq equation, and the sixth-order Boussinesq equation are studied. The Hirota bilinear method is used to construct two soliton solutions for each equation. The study highlights the fact that these equations are non-integrable and do not admit N-soliton solutions although these equations can be put in bilinear forms.
35Q53KdV-like (Korteweg-de Vries) equations
35C08Soliton solutions of PDE
[1]Johnson, R. S.: A two-dimensional Boussinesq equation for water waves and some of its solutions, J. fluid mech. 323, 65-78 (1996) · Zbl 0896.76007 · doi:10.1017/S0022112096000845
[2]Zhang, J.; Lai, X.: A class of periodic solutions of the (2+1)-dimensional Boussinesq equation, J. phys. Soc. jpn. 75, 2402-2405 (2004) · Zbl 1082.35138 · doi:10.1143/JPSJ.73.2402
[3]Wazwaz, A. M.: Multiple-soliton solutions for the ninth-order KdV equation and sixth-order Boussinesq equation, Appl. math. Comput. 203, 277-283 (2008) · Zbl 1157.65461 · doi:10.1016/j.amc.2008.04.040
[4]Wazwaz, A. M.: Erratum to: multiple-soliton solutions for the ninth-order KdV equation and sixth-order Boussinesq equation, Appl. math. Comput. 206, 1005 (2008) · Zbl 1188.65141 · doi:10.1016/j.amc.2008.09.011
[5]Yong, W.: Periodic wave solution to the (3+1)-dimensional Boussinesq equation, Chin. phys. Lett. 25, 2739-2742 (2008)
[6]Hirota, R.: The direct method in soliton theory, (2004)
[7]Hirota, R.: Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. rev. Lett. 27, No. 18, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[8]Hirota, R.: Exact solutions of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. phys. Soc. jpn. 33, No. 5, 1456-1458 (1972)
[9]Biswas, A.: 1-soliton solution of the K(m,n) equation with generalized evolution, Phys. lett. A 372, 4601-4602 (2008) · Zbl 1221.35099 · doi:10.1016/j.physleta.2008.05.002
[10]Biswas, A.: 1-soliton solution of the generalized Camassa – Holm l-petviashvilli equation, Commun. nonlinear sci. Numer. simul. 14, 2524-2527 (2009) · Zbl 1221.35309 · doi:10.1016/j.cnsns.2008.09.023
[11]Dehghan, M.; Shokri, A.: A numerical method for solution of the two-dimensional sine – Gordon equation using the radial basis functions, Comput. math. Simul. 79, 700-715 (2008) · Zbl 1155.65379 · doi:10.1016/j.matcom.2008.04.018
[12]Wazwaz, A. M.: Partial differential equations and solitary waves theory, (2009)
[13]Wazwaz, A. M.: Partial differential equations: methods and applications, (2002)
[14]Wazwaz, A. M.: New solitary-wave special solutions with compact support for the nonlinear dispersive K(m,n) equations, Chaos, solitons fractals 13, No. 2, 321-330 (2002) · Zbl 1028.35131 · doi:10.1016/S0960-0779(00)00249-6
[15]Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations, J. math. Phys. 28, No. 8, 1732-1742 (1987) · Zbl 0641.35073 · doi:10.1063/1.527815
[16]Hereman, W.; Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. comput. Simul. 43, 13-27 (1997) · Zbl 0866.65063 · doi:10.1016/S0378-4754(96)00053-5
[17]Wazwaz, A. M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh – coth method, Appl. math. Comput. 190, 633-640 (2007)
[18]Wazwaz, A. M.: Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. math. Comput. 190, 1198-1206 (2007) · Zbl 1123.65106 · doi:10.1016/j.amc.2007.02.003