zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A nonstandard numerical scheme of predictor-corrector type for epidemic models. (English) Zbl 1198.65116
Summary: We construct and develop a competitive nonstandard finite difference numerical scheme of predictor-corrector type for the classical SIR epidemic model. This proposed scheme is designed with the aim of obtaining dynamical consistency between the discrete solution and the solution of the continuous model. The nonstandard finite difference scheme with Conservation Law (NSFDCL) developed here satisfies some important properties associated with the considered SIR epidemic model, such as positivity, boundedness, monotonicity, stability and conservation of frequency of the oscillations. Numerical comparisons between the NSFDCL numerical scheme developed here and Runge-Kutta type schemes show its effectiveness.
MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
92D30Epidemiology
References:
[1]Mickens, Ronald E.: Nonstandard finite difference models of differential equations, (1994) · Zbl 0810.65083
[2]Mickens, R. E.: Applications of nonstandard finite difference schemes, (2000)
[3]Mickens, R. E.: Numerical integration of population models satisfying conservation laws: NSFD methods, Journal of biological dynamics 1, No. 4, 427-436 (2007)
[4]Mickens, R. E.: Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations, Journal of difference equations and applications 11, No. 7, 645-653 (2005) · Zbl 1073.65552 · doi:10.1080/10236190412331334527
[5]Anguelov, R.; Lubuma, J. M. -S.: Contributions to the mathematics of the nonstandard finite difference method and applications, Numerical methods for partial differential equations 17, No. 5, 518-543 (2001) · Zbl 0988.65055 · doi:10.1002/num.1025
[6]Anguelov, Roumen; Lubuma, J. M. S.: Nonstandard finite difference method by nonlocal approximation, Mathematics and computers in simulation 61, No. 3–6, 465-475 (2003) · Zbl 1015.65034 · doi:10.1016/S0378-4754(02)00106-4
[7]Dimitrov, Dobromir T.; Kojouharov, Hristo V.: Positive and elementary stable nonstandard numerical methods with applications to predator–prey models, Journal of computational and applied mathematics, No. 1–2, 98-108 (2006) · Zbl 1087.65068 · doi:10.1016/j.cam.2005.04.003
[8]Solis, Francisco J.; Chen-Charpentier, Benito: Nonstandard discrete approximations preserving stability properties of continuous mathematical models, Mathematical computer modelling 40, 481-490 (2004) · Zbl 1112.65070 · doi:10.1016/j.mcm.2004.02.028
[9]Chen-Charpentier, B. M.; Dimitrov, D. T.; Kojouharov, H. V.: Combined nonstandard numerical methods for odes with polynomial right-hand sides, Mathematics and computers in simulation 73, 105-113 (2006) · Zbl 1105.65084 · doi:10.1016/j.matcom.2006.06.008
[10]Villanueva, Rafael; Arenas, Abraham J.; González-Parra, Gilberto: A nonstandard dynamically consistent numerical scheme applied to obesity dynamics, Journal of applied mathematics 2008, 14 (2008) · Zbl 1157.92028 · doi:10.1155/2008/640154
[11]Arenas, Abraham J.; Morano, José Antonio; Cortés, Juan Carlos: Non-standard numerical method for a mathematical model of RSV epidemiological transmission, Computers mathematics with applications 56, 670-678 (2008) · Zbl 1155.92337 · doi:10.1016/j.camwa.2008.01.010
[12]Moghadas, S. M.; Alexander, M. E.; Corbett, B. D.; Gumel, A. B.: A positivity preserving Mickens-type discretization of an epidemic model, Journal of difference equations and applications 9, No. 11, 1037-1051 (2003) · Zbl 1033.92030 · doi:10.1080/1023619031000146913
[13]Piyawong, W.; Twizell, E. H.; Gumel, A. B.: An unconditionally convergent finite-difference scheme for the SIR model, Applied mathematics and computation 146, 611-625 (2003) · Zbl 1026.92041 · doi:10.1016/S0096-3003(02)00607-0
[14]Jansen, H.; Twizell, E. H.: An unconditionally convergent discretization of the SEIR model, Mathematics and computers in simulation 58, 147-158 (2002) · Zbl 0983.92025 · doi:10.1016/S0378-4754(01)00356-1
[15]Gumel, A. B.; Mickens, R. E.; Corbett, B. D.: A non-standard finite-difference scheme for a model of HIV transmission and control, Journal of computational methods in sciences and engineering 3, No. 1, 91-98 (2003) · Zbl 1036.65057
[16]Jódar, Lucas; Villanueva, Rafael J.; Arenas, Abraham J.; González, Gilberto C.: Nonstandard numerical methods for a mathematical model for influenza disease, Mathematics and computers in simulation 79, 622-633 (2008) · Zbl 1151.92018 · doi:10.1016/j.matcom.2008.04.008
[17]Lambert, J. D.: Computational methods in ordinary differential equations, (1973) · Zbl 0258.65069
[18]Duncan, C. J.; Duncan, S. R.; Scott, S.: Whooping cough epidemic in London, 1701–1812: infection dynamics seasonal forcing and the effects of malnutrition, Proceedings of the royal society of London, series B 263, 445-450 (1996)
[19]Mickens, R. E.: Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Wiley interscience 23, No. 3, 672-691 (2006) · Zbl 1114.65094 · doi:10.1002/num.20198
[20]Brauer, F.; Castillo-Chavez, C.: Mathematical models in population biology and epidemiology, (2001)