zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On second order of accuracy difference scheme of the approximate solution of nonlocal elliptic-parabolic problems. (English) Zbl 1198.65120
Summary: A second order of accuracy difference scheme for the approximate solution of the abstract nonlocal boundary value problem -d 2 u(t)/dt 2 +Au(t)=g(t),(0t1),du(t)/dt-Au(t)=f(t),(-1t0),u(1)=u(-1)+μ for differential equations in a Hilbert space H with a self-adjoint positive definite operator A is considered. The well posedness of this difference scheme in Hölder spaces is established. In applications, coercivity inequalities for the solution of a difference scheme for elliptic-parabolic equations are obtained and a numerical example is presented.
65L10Boundary value problems for ODE (numerical methods)
34G10Linear ODE in abstract spaces
35M13Initial-boundary value problems for PDE of mixed type
65M06Finite difference methods (IVP of PDE)