zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive query processing. (English) Zbl 1198.68127
Summary: As the data management field has diversified to consider settings in which queries are increasingly complex, statistics are less available, or data is stored remotely, there has been an acknowledgment that the traditional optimize-then-execute paradigm is insufficient. This has led to a plethora of new techniques, generally placed under the common banner of adaptive query processing, that focus on using runtime feedback to modify query processing in a way that provides better response time or more efficient CPU utilization. In this survey paper, we identify many of the common issues, themes, and approaches that pervade this work, and the settings in which each piece of work is most appropriate. Our goal with this paper is to be a “value-add” over the existing papers on the material, providing not only a brief overview of each technique, but also a basic framework for understanding the field of adaptive query processing in general. We focus primarily on intra-query adaptivity of long-running, but not full-fledged streaming, queries. We conclude with a discussion of open research problems that are of high importance.
MSC:
68P15Database theory
68-02Research monographs (computer science)