zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Differential transform method for solving the linear and nonlinear Klein-Gordon equation. (English) Zbl 1198.81038
Summary: We implemented relatively new, exact series method of solution known as the differential transform method for solving linear and nonlinear Klein-Gordon equation. Several illustrative examples are given to demonstrate the effectiveness of the present method.

MSC:
81-08Computational methods (quantum theory)
81Q05Closed and approximate solutions to quantum-mechanical equations
References:
[1]Caudrey, P. J.; Eilbeck, I. C.; Gibbon, J. D.: The sine-Gordon as a model classical field theory, II, Nuovo cimento 25, 497-511 (1975)
[2]Dodd, R. K.; Eilbeck, I. C.; Gibbon, J. D.; Morris, H. C.: Solitons and nonlinear wave equations, (1982)
[3]Deeba, E. Y.; Khuri, S. A.: A decomposition method for solving the nonlinear Klein – Gordon equation, J. comput. Phys. 124, 442-448 (1996) · Zbl 0849.65073 · doi:10.1006/jcph.1996.0071
[4]El-Sayed, S.: The decomposition method for studying the Klein – Gordon equation, Chaos, solitons & fractals 18, 1025-1030 (2003) · Zbl 1068.35069 · doi:10.1016/S0960-0779(02)00647-1
[5]Kaya, D.; El-Sayed, S. M.: A numerical solution of the Klein – Gordon equation and convergence of the decomposition method, Applied mathematics and computation 156, 341-353 (2004) · Zbl 1084.65101 · doi:10.1016/j.amc.2003.07.014
[6]Chowdhury, M. S. H.; Hashim, I.: Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations, chaos, solitons & fractals · Zbl 1197.65164 · doi:10.1016/j.chaos.2007.06.091
[7]Zhou, J. K.: Differential transform and its applications for electrical circuits, (1986)
[8]Chen, C. K.; Ho, S. H.: Solving partial differential equations by two-dimensional differential transform method, Appl. math. Comput. 106, 171-179 (1999) · Zbl 1028.35008 · doi:10.1016/S0096-3003(98)10115-7
[9]Jang, M. J.; Chen, C. L.; Liu, Y. C.: Two-dimensional differential transform for partial differential equations, Appl. math. Comput. 121, 261-270 (2001) · Zbl 1024.65093 · doi:10.1016/S0096-3003(99)00293-3
[10]Hassan, O. Abdel-Halim: Different applications for the differential transformation in the differential equations, Appl. math. Comput. 129, 183-201 (2002) · Zbl 1026.34010 · doi:10.1016/S0096-3003(01)00037-6
[11]Ayaz, F.: On two-dimensional differential transform method, Appl. math. Comput. 143, 361-374 (2003) · Zbl 1023.35005 · doi:10.1016/S0096-3003(02)00368-5
[12]Ayaz, F.: Solution of the system of differential equations by differential transform method, Appl. math. Comput. 147, 547-567 (2004) · Zbl 1032.35011 · doi:10.1016/S0096-3003(02)00794-4
[13]Kurnaz, A.; Oturnaz, G.; Kiris, M. E.: N-dimensional differential transformation method for solving linear and nonlinear PDE’s, Int. J. Comput. math. 82, 369-380 (2005) · Zbl 1065.35011 · doi:10.1080/0020716042000301725
[14]Hassan, O. Adbel-Halim: Comparison differential transform technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos, solitons & fractals 36, 53-65 (2008) · Zbl 1152.65474 · doi:10.1016/j.chaos.2006.06.040
[15]Kangalgil, O. Figen; Ayaz, O. Fatma: Solitary wave solutions for the KdV and mkdv equations by differential transform method · Zbl 1198.35222 · doi:10.1016/j.chaos.2008.02.009
[16]Wazwaz, A. M.: The modified decomposition method for analytic treatment of differential equations, Appl. math. Comput. 173, 165-176 (2006) · Zbl 1089.65112 · doi:10.1016/j.amc.2005.02.048
[17]Kanth, A. S. V. Ravi; Aruna, K.: Differential transform method for solving linear and non-linear systems of partial differential equations, Phys. lett. A 372, 6896-6898 (2008) · Zbl 1227.35018 · doi:10.1016/j.physleta.2008.10.008
[18]Yusufo&gbreve, O. Elcin; Lu: The variational iteration method for studying the Klein – Gordon equation, Appl. math. Lett. 21, 669-674 (2008)