×

Nonsmooth vector optimization problems and Minty vector variational inequalities. (English) Zbl 1198.90343

Authors’ abstract: The vector optimization problem may have a nonsmooth objective function. Therefore, we introduce the Minty vector variational inequality (Minty VVI) and the Stampacchia vector variational inequality (Stampacchia VVI) defined by means of upper Dini derivative. By using the Minty VVI, we provide a necessary and sufficient condition for a vector minimal point (v.m.p.) of a vector optimization problem for pseudoconvex functions involving Dini derivatives. We establish the relationship between the Minty VVI and the Stampacchia VVI under upper sign continuity. Some relationships among v.m.p., weak v.m.p., solutions of the Stampacchia VVI and solutions of the Minty VVI are discussed. We present also an existence result for the solutions of the weak Minty VVI and the weak Stampacchia VVI.

MSC:

90C29 Multi-objective and goal programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Homidan, S., Ansari, Q.H.: Generalized minty vector variational-like inequalities and vector optimization problems. J. Optim. Theory Appl. 144(1), (2010) · Zbl 1247.90227
[2] Ansari, Q.H., Yao, J.C.: On nondifferentaible and nonconvex vector optimization problems. J. Optim. Theory Appl. 106(3), 475–488 (2000) · Zbl 0970.90092 · doi:10.1023/A:1004697127040
[3] Giannessi, F.: On minty variational principle. In: Giannessi, F., Komlòsi, S., Tapcsáck, T. (eds.) New Trends in Mathematical Programming, pp. 93–99. Kluwer Academic, Dordrecht (1998) · Zbl 0909.90253
[4] Giannessi, F.: Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Kluwer Academic, Dordrecht (2000) · Zbl 0952.00009
[5] Komlòsi, S.: On the stampacchia and minty variational inequalities. In: Giorgi, G., Rossi, F. (eds.) Generalized Convexity and Optimization for Economic and Financial Decisions, pp. 231–260. Pitagora Editrice, Bologna (1999) · Zbl 0989.47055
[6] Lee, G.M.: On relations between vector variational inequality and vector optimization problem. In: Yang, X.Q., Mees, A.I., Fisher, M.E., Jennings, L.S. (eds.) Progress in Optimization, II: Contributions from Australasia, pp. 167–179. Kluwer Academic, Dordrecht (2000) · Zbl 0969.49003
[7] Lee, G.M., Kim, D.S., Kuk, H.: Existence of solutions for vector optimization problems. J. Math. Anal. Appl. 220, 90–98 (1998) · Zbl 0911.90290 · doi:10.1006/jmaa.1997.5821
[8] Lee, G.M., Kim, D.S., Lee, B.S., Yen, N.D.: Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal.: Theory Methods Appl. 34, 745–765 (1998) · Zbl 0956.49007 · doi:10.1016/S0362-546X(97)00578-6
[9] Ruiz-Garzón, G., Osuna-Gómez, R., Rufián-Lizana, A.: Relationships between vector variational-like inequality and optimization problems. Eur. J. Oper. Res. 157, 113–119 (2004) · Zbl 1106.90060 · doi:10.1016/S0377-2217(03)00210-8
[10] Yang, X.M., Yang, X.Q., Teo, K.L.: Some remarks on the minty vector variational inequality. J. Optim. Theory Appl. 121(1), 193–201 (2004) · Zbl 1140.90492 · doi:10.1023/B:JOTA.0000026137.18526.7a
[11] Crespi, G.P., Ginchev, I., Rocca, M.: Minty variational inequalities, increase along rays property and optimization. J. Optim. Theory Appl. 123(3), 479–496 (2004) · Zbl 1059.49010 · doi:10.1007/s10957-004-5719-y
[12] Crespi, G.P., Ginchev, I., Rocca, M.: Existence of solutions and star-shapedness in minty variational inequalities. J. Glob. Optim. 32, 485–494 (2005) · Zbl 1097.49007 · doi:10.1007/s10898-003-2685-0
[13] Crespi, G.P., Ginchev, I., Rocca, M.: Some remarks on the minty vector variational principle. J. Math. Anal. Appl. 345, 165–175 (2008) · Zbl 1152.49007 · doi:10.1016/j.jmaa.2008.03.012
[14] Sach, P.H., Penot, J.-P.: Charaterizations of generalized convexities via generalized directional derivative. Numer. Funct. Anal. Optim. 19(5–6), 615–634 (1998) · Zbl 0916.49015 · doi:10.1080/01630569808816849
[15] Komlòsi, S.: Generalized monotonicity and generalized convexity. J. Optim. Theory Appl. 84(2), 361–376 (1995) · Zbl 0824.90124 · doi:10.1007/BF02192119
[16] Giorgi, G., Komlósi, S.: Dini derivatives in optimization–Part III. Riv. Mat. Sci. Econ. Soc. 18(1), 47–63 (1995) · Zbl 0884.90134
[17] Diewert, W.E.: Alternative charaterizations of six kinds of quasiconcavity in the nondifferentiable case with applications to nonsmooth programming. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 51–93. Academic Press, New York (1981) · Zbl 0539.90088
[18] Lalitha, C.S., Mehta, M.: Vector variational inequalities with cone-pseudomonotone bifunctions. Oprimization 54(3), 327–338 (2005) · Zbl 1087.90069 · doi:10.1080/02331930500100254
[19] Hadjisavvas, N.: Continuity and maximality properties of pseudomonotone operators. J. Convex Anal. 10(2), 459–469 (2003) · Zbl 1063.47041
[20] Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961) · Zbl 0093.36701 · doi:10.1007/BF01353421
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.