zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A stable adaptive synchronization scheme for uncertain chaotic systems via observer. (English) Zbl 1198.93196

Summary: A novel observer-based adaptive synchronization scheme is presented which is used in a chaos communication system. Also, a new nonlinear stochastic adaptive sliding mode observer is extended to reconstruct the states of the stochastic chaotic transmitter at the receiver. The observer is able to overcome the effect of model and parameters uncertainties as well as transmitter, channel and measurement noises. Moreover, a theorem is presented to prove the stability in probability of the proposed observer using stochastic Lyapunov stability criterion. The time-varying adaptation gains of the observer resulted from the proposed theorem ensure fast convergence of the estimated states. Adaptation gains are bounded and do not have any singularity problem especially when the mean value of the observer states’ error. In this paper, the parameters of the transmitter are unknown or are changed intermittently to increase the security of the message transmission. Performance of the message reconstruction in the receiver is enhanced using the scalar transmitted signal to estimate the parameters of the transmitter.

Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
93D21Adaptive or robust stabilization