zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Classification of quasi-minimal slant surfaces in Lorentzian complex space forms. (English) Zbl 1199.53167
The authors classify quasi-minimal slant surfaces in the Lorentzian complex plane. There exist five large families of quasi-minimal proper slant surfaces in C21. Quasi-minimal slant surfaces in C21 are either Lagrangian or locally obtained from one of the five families. Quasi-minimal slant surfaces in a non-flat Lorentzian complex space form are Lagrangian.
MSC:
53D12Lagrangian submanifolds; Maslov index
53C40Global submanifolds (differential geometry)
83C75Space-time singularities, cosmic censorship, etc.
References:
[1]J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42 (2000), 125–138. · Zbl 0957.53022 · doi:10.1017/S0017089500010156
[2]A. Carriazo, L. M. Fernández and M. B. Hans-Uber, Some slant submanifolds of S-manifolds, Acta Math. Hungar., 107 (2005), 267–285. · Zbl 1120.53027 · doi:10.1007/s10474-005-0195-x
[3]A. Carriazo, L. M. Fernández and M. B. Hans-Uber, Minimal slant submanifolds of the smallest dimension in S-manifolds, Rev. Mat. Iberoamericana, 21 (2005), 47–66.
[4]B. Y. Chen, Geometry of Submanifolds, M. Dekker (New York, 1973).
[5]B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven (Belgium, 1990).
[6]B. Y. Chen, Classification of flat slant surfaces in complex Euclidean plane, J. Math. Soc. Japan, 54 (2002), 719–746. · Zbl 1038.53054 · doi:10.2969/jmsj/1191591991
[7]B. Y. Chen, Classification of marginally trapped Lorentzian flat surfaces in 𝔼 2 4 and its application to biharmonic surfaces, J. Math. Anal. Appl., 340 (2008), 861–875. · Zbl 1160.53007 · doi:10.1016/j.jmaa.2007.09.021
[8]B. Y. Chen and F. Dillen, Classification of marginally trapped Lagrangian surfaces in Lorentzian complex space forms, J. Math. Phys., 48 (2007), 013509, 23 pages; Erratum, J. Math. Phys., 49 (2008), 059901.
[9]B. Y. Chen and S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math., 52 (1998), 167–185. · Zbl 0892.53012 · doi:10.2206/kyushujm.52.167
[10]B. Y. Chen and Y. Tazawa, Slant submanifolds of complex projective and complex hyperbolic spaces, Glasgow Math. J., 42 (2000), 439–454. · Zbl 0979.53058 · doi:10.1017/S0017089500030111
[11]B. Y. Chen and L. Vrancken, Lagrangian minimal isometric immersions of a Lorentzian real space form into a Lorentzian complex space form, Tohoku Math. J., 54 (2002), 121–143. · Zbl 1013.53039 · doi:10.2748/tmj/1113247183
[12]V. V. Goldberg and R. Roşca, Pseudo-Riemannian manifolds endowed with an almost para f-structure, Internat. J. Math. Math. Sci., 8 (1985), 257–266. · Zbl 0589.53035 · doi:10.1155/S016117128500028X
[13]K. Kenmotsu and D. Zhou, Classification of the surfaces with parallel mean curvature vector in two dimensional complex space forms, Amer. J. Math., 122 (2000), 295–317.
[14]I. Mihai and Y. Tazawa, On 3-dimensional contact slant submanifolds in Sasakian space forms, Bull. Austral. Math. Soc., 68 (2003), 275–283. · Zbl 1048.53043 · doi:10.1017/S0004972700037655
[15]R. Roşca, Codimension 2, CR-submanifolds with null covariant decomposable vertical distribution of a neutral manifold M, Rend. Mat. (Ser. VII), 2 (1982), 787–797.
[16]T. Sasahara, Quasi-minimal Lagrangian surfaces whose mean curvature vectors are eigenvectors, Demonstratio Math., 38 (2005), 185–196.
[17]T. Sasahara, Biharmonic Lagrangian surfaces of constant mean curvature in complex space forms, Glasgow Math. J., 49 (2007), 497–507. · Zbl 1132.53310 · doi:10.1017/S0017089507003886