zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Continuous operators on asymmetric normed spaces. (English) Zbl 1199.54165

For a real linear space, a function p:X + is called an asymmetric norm on X if for all x,yX and r + , (i) p(x)=p(-x)=0; (ii) p(rx)=rp(x); (iii) p(x+y)p(x)+p(y). For an asymmetric norm p on X, p -1 , defined on X by p -1 (x)=p(-x) is also an asymmetric norm on X; the function p s defined on X by p s (x)=max{p(x),p -1 (x)} is obviously a norm on X; also, for a normed lattice (X,·), p(x)=x + with x + =sup{x,0} is an asymmetric norm on X.

The author uses the symbol LC(X,Y) to denote the set of all continuous linear mappings from (X,p) to (Y,q) where p, q are asymmetric norms whereas LC s (X,Y) is used to denote the set of all continuous linear mappings from (X,p s ) to (Y,q s ); LC(X,Y) is not a linear space but a cone which is included in LC s (X,Y).

If (Y,q) is (,u) where u is the asymmetric norm on given by u(x)=x + , then LC(X,) and LC s (X,) are denoted by X * and X s* , respectively. It is proved that, with (X,·) and (Y,·) two normed lattices, p(x)=x + if xX and q(y)=y + if yY, fLC(X,Y) iff fLC s (X,Y) and f0; also p q * (f)f2p q * (f), for all fLC(X,Y) where p q * (f)=sup{q(f(x)):p(x)1}, it is further proved that, if (X,·) is a real normed lattice and q(x)=x + , then X s* =X * -X * .

In the last section, open mapping and closed graph theorems are given, in a suitable manner, in the new setting.

MSC:
54E35Metric spaces, metrizability
54A05Topological spaces and generalizations
46A03General theory of locally convex spaces
References:
[1]C. Alegre, Estructuras Topológicas no Simétricas y Espacios Bitopológicos, Thesis, Universidad Politécnica de Valencia (1994).
[2]C. Alegre, I. Ferrando, L. M. García-Raffi and E. A. Sánchez-Pérez, Compactness in asymmetric normed spaces, Topology Appl., 155 (2008), 527–539. · Zbl 1142.46004 · doi:10.1016/j.topol.2007.11.004
[3]C. Alegre, J. Ferrer and V. Gregori, On the Hahn–Banach theorem in certain linear quasi-uniform structures, Acta Math. Hungar., 82 (1999), 315–320. · Zbl 0930.46004 · doi:10.1023/A:1006692309917
[4]C. Alegre, J. Ferrer and V. Gregori, On a class of real normed lattices, Czech. Math. J., 48 (1998), 785–791. · Zbl 0949.54045 · doi:10.1023/A:1022499925483
[5]A. Alimov, On the structure of the complements of Chebyshev sets, Funct. Anal. Appl., 35 (2001), 176–182. · Zbl 1099.41501 · doi:10.1023/A:1012370610709
[6]A. Alimov, The Banach–Mazur theorem for spaces with nonsymmetric distances, Uspekhi Mat. Nauk, 58 (2003), 159–160.
[7]C. Aliprantis and K. Border, Infinite Dimensional Analysis, Springer ( New York, 2006).
[8]S. Cobzas, Separation of convex sets and best aproximation in spaces with asymmetric norms, Quaest. Math., 27 (2004), 275–296. · Zbl 1082.41024 · doi:10.2989/16073600409486100
[9]J. Ferrer, V. Gregori and C. Alegre, Quasi-uniform structures in linear lattices, Rocky Mountain J. Math., 23 (1993), 877–884. · Zbl 0803.46007 · doi:10.1216/rmjm/1181072529
[10]P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker ( New York, 1982).
[11]L. M. García-Raffi, Asymmetric Norms and the Dual Complexity Spaces. Thesis, Universidad Politécnica de Valencia (2003).
[12]L. M. García-Raffi, S. Romaguera and E. A. Sánchez-Pérez, The bicompletion of an asymmetric normed linear space, Acta Math. Hungar., 97 (2002), 183–191. · Zbl 1012.54031 · doi:10.1023/A:1020823326919
[13]L. M. García-Raffi, S. Romaguera and E. A. Sánchez-Pérez, Sequence spaces and asymmetric norms in the theory of computational complexity, Math. Comp. Model., 36 (2002), 1–11. · Zbl 1063.68057 · doi:10.1016/S0895-7177(02)00100-0
[14]L. M. García Raffi, S. Romaguera and E. A. Sánchez Pérez, On Hausdorff asymmetric normed linear spaces, Houston J. Math., 29 (2003), 717–728.
[15]L. M. García Raffi, S. Romaguera and E. A. Sánchez-Pérez, The dual space of an asymmetric normed linear space, Quaestiones Math., 26 (2003), 83–96. · Zbl 1043.46021 · doi:10.2989/16073600309486046
[16]L. M. García Raffi, S. Romaguera and E. A. Sánchez Pérez, Weak topologies on asymmetric normed linear spaces and non-asymptotic criteria in the theory of complexity analysis of algorithms, J. Anal. Appl., 2 (2004), 125–138.
[17]J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71–89. · Zbl 0107.16401 · doi:10.1112/plms/s3-13.1.71
[18]H. P. A. Künzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, in: Handbook of the History of General Topology, C. E. Aull and R. Lowen (eds), vol. 3, Kluwer (Dordrecht, 2001), pp. 853–968.
[19]I. L. Reilly, P. V. Subrahmanyam and M. K. Vamanamurthy, Cauchy sequences in quasi-pseudometric spaces, Monatsch. Math., 93 (1982), 127–140. · Zbl 0472.54018 · doi:10.1007/BF01301400
[20]A. Robertson and W. Robertson, Topological Vector Spaces, Cambridge University Press (1980).
[21]S. Romaguera, E. A. Sánchez Pérez and O. Valero, Computing complexity distances between algorithms, Kybernetika, 36 (2003), 369–382.
[22]S. Romaguera and M. Sanchis, Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103 (2000), 292–301. · Zbl 0980.41029 · doi:10.1006/jath.1999.3439
[23]S. Romaguera and M. Schellekens, Duality and quasi-normability of complexity space spaces, Appl. Gen. Topology, 3 (2002), 91–112.
[24]M. Schellekens, The Smyth completion: a common foundation for denotational semantics and complexity analysis, in: Proc. MFPS 11, Electronic Notes in Theoretical Computer Science, 1 (1995), pp. 211–232.
[25]R. Tix, Continuous D-Cones: Convexity and Powerdomain Constructions, Thesis, Darmstadt University (1999).