[1] | S. Csörgo, Rates of merge in generalized St. Petersburg games, Acta Sci. Math. (Szeged), 68 (2002), 815–847. |

[2] | S. Csörgo, A probabilistic proof of Kruglov’s theorem on the tails of infinitely divisible distributions, Acta Sci. Math. (Szeged), 71 (2005), 405–415. |

[3] | S. Csörgo, Merging asymptotic expansions in generalized St. Petersburg games, Acta Sci. Math. (Szeged), 73 (2007), 297–331. |

[4] | S. Csörgo, Fourier analysis of semistable distributions, Acta Appl. Math., 96 (2007), 159–175. · Zbl 1117.60015 · doi:10.1007/s10440-007-9111-4 |

[5] | S. Csörgo and R. Dodunekova, Limit theorems for the Petersburg game, in: Sums, Trimmed Sums and Extremes (M. G. Hahn, D. M. Mason and D. C. Weiner, eds.), Progress in Probability 23, Birkhäuser (Boston, 1991), pp. 285–315. |

[6] | S. Csörgo and Z. Megyesi, Merging to semistable laws, Teor. Veroyatn. Primen., 47 (2002), 90–109. [Theory Probab. Appl., 47 (2002), 17–33.] |

[7] | S. Csörgo and G. Simons, The two-Paul paradox and the comparison of infinite expectations, in: Limit Theorems in Probability and Statistics (Eds. I. Berkes, E. Csáki and M. Csörgo), Vol. I, János Bolyai Mathematical Society (Budapest, 2002), pp. 427–455. |

[8] | S. Csörgo and G. Simons, Laws of large numbers for cooperative St. Petersburg gamblers, Period. Math. Hungar., 50 (2005), 99–115. · Zbl 1113.60026 · doi:10.1007/s10998-005-0005-9 |

[9] | S. Csörgo and G. Simons, Pooling strategies for St. Petersburg gamblers, Bernoulli, 12 (2006), 971–1002. · Zbl 1130.91018 · doi:10.3150/bj/1165269147 |

[10] | J. Gil-Pelaez, Note on the inversion theorem, Biometrika, 38 (1951), 481–482. |

[11] | P. Kevei, Generalized n-Paul paradox, Statist. Probab. Lett., 77 (2007), 1043–1049. · Zbl 1138.60026 · doi:10.1016/j.spl.2006.08.027 |

[12] | A. Martin-Löf, A limit theorem which clarifies the ’Petersburg paradox’, J. Appl. Probab., 22 (1985), 634–643. · Zbl 0574.60032 · doi:10.2307/3213866 |

[13] | Z. Megyesi, A probabilistic approach to semistable laws and their domains of partial attraction, Acta Sci. Math. (Szeged), 66 (2000), 403–434. |

[14] | G. Pap, The accuracy of merging approximation in generalized St. Petersburg games, preprint. |

[15] | V. V. Petrov, Limit Theorems of Probability Theory, Oxford Studies in Probability 4, Clarendon Press (Oxford, 1996). |

[16] | B. Rosén, On the asymptotic distribution of sums of independent identically distributed random variables, Ark. Mat., 4 (1962), 323–332. · Zbl 0103.11902 · doi:10.1007/BF02591508 |