zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Preconditioners for the discretized time-harmonic Maxwell equations in mixed form. (English) Zbl 1199.78010
Summary: We introduce a new preconditioning technique for iteratively solving linear systems arising from finite element discretization of the mixed formulation of time-harmonic Maxwell equations. The preconditioners are motivated by spectral equivalence properties of discrete operators, but are augmentation free and Schur complement free. We provide a complete spectral analysis, and show that the eigenvalues of the preconditioned saddle point matrix are strongly clustered. The analytical observations are accompanied by numerical results that demonstrate the scalability of the proposed approach.

MSC:
78M10Finite element methods (optics)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65F10Iterative methods for linear systems