zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New exact solitary wave and multiple soliton solutions of quantum Zakharov-Kuznetsov equation. (English) Zbl 1200.35238
Summary: By employing auxiliary equation method and Hirota bilinear method, the quantum Zakharov-Kuznetsov equation which arises in quantum magnetoplasma is investigated. With the aid of symbolic computation, both solitary wave solutions and multiple-soliton solutions are obtained. These new exact solutions extend previous results and help us to explain the properties of multidimensional nonlinear ion-acoustic waves in dense magnetoplasma.
35Q40PDEs in connection with quantum mechanics
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
35C07Traveling wave solutions of PDE
35C08Soliton solutions of PDE
[1]Markowich, P. A.; Ringhofer, C. A.; Schmeiser, C.: Semiconductor equations, (1990) · Zbl 0765.35001
[2]Shpatakovskaya, G. V.: Semiclassical model of a one-dimensional quantum dot, J. exp. Theor. phys 102, 466-474 (2006)
[3]Ang, L. K.; Zhang, P.: Ultrashort-pulse child-Langmuir law in the quantum and relativistic regimes, Phys. rev. Lett. 98, 164802-1-164802-4 (2007)
[4]Killian, T. C.: Plasma physics – cool vibes, Nature (London) 441, 297-298 (2006)
[5]Becker, K. H.; Schoenbach, K. H.; Eden, J. G.: Environmental and biological applications of microplasmas, J. phys. D 39, R55-R70 (2006)
[6]Barnes, W. L.; Dereux, A.; Ebbesen, T. W.: Surface plasmon subwavelength optics, Nature (London) 424, 824-830 (2003)
[7]Chabrier, G.; Douchin, F.; Potekhin, A. Y.: Dense astrophysical plasmas, J. phys.: condens. Matter 14, 9133-9139 (2002)
[8]Jung, Y. D.: Quantum-mechanical effects on electron – electron scattering in dense high-temperature plasmas, Phys. plasmas 8, 3842-3844 (2001)
[9]Khan, S. A.; Masood, W.: Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron – positron – ion plasmas, Phys. plasmas 15, 062301-1-062301-6 (2008)
[10]Ali, S.; Moslem, W. M.; Shukla, P. K.; Schlickeiserd, R.: Linear and nonlinear ion-acoustic waves in an unmagnetized electron – positron – ion quantum plasma, Phys. plasmas 14, 082307-1-082307-8 (2007)
[11]Khan, S. A.; Mushtaq, A.: Linear and nonlinear dust ion acoustic waves in ultracold quantum dusty plasmas, Phys. plasmas 14, 083703-1-083703-5 (2007)
[12]Khan, S. A.; Haque, Q.: Electrostatic nonlinear structures in dissipative electron – positron – ion quantum plasmas, Chin. phys. Lett. 25, No. 12, 4329-4332 (2008)
[13]Zakharov, V. E.; Kuznetsov, E. A.: On three-dimensional solitons, Sov. phys. JETP 39, 285-288 (1974)
[14]Moslem, W. M.; Ali, S.; Shukla, P. K.; Tang, X. Y.; Rowlands, G.: Solitary, explosive, and periodic solutions of the quantum Zakharov – Kuznetsov equation and its transverse instability, Phys. plasmas 14, 082308-1-082308-5 (2007)
[15]Sabry, R.; Moslem, W. M.; Haas, F.; Ali, S.; Shukla, P. K.: Nonlinear structures: explosive, soliton, and shock in a quantum electron – positron – ion magnetoplasma, Phys. plasmas 15, 122308-1-122308-7 (2008)
[16]Wang, Y. Y.; Zhang, J. F.: Soliton and chaotic structures of dust ion-acoustic waves in quantum dusty plasmas, Phys. lett. A 372, 6509-6517 (2008) · Zbl 1225.76313 · doi:10.1016/j.physleta.2008.09.004
[17]Xue, J. K.: Modulational instability of multi-dimensional dust ion-acoustic waves, Phys. lett. A 330, 390-395 (2004)
[18]Washimi, H.; Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude, Phys. rev. Lett. 17, 996-998 (1966)
[19]Conte, R.: Invariant Painlevé analysis of partial – differential equations, Phys. lett. A 140, 383-390 (1989)
[20]Allen, M. A.; Rowlands, G.: Determination of the growth-rate for the linearized Zakharov – Kuznetsov equation, J. plasma phys. 50, 413-424 (1993)
[21]Infeld, E.; Rowlands, G.: Nonlinear waves, solitons and chaos, (2000)
[22]Sirendaoreji: Auxiliary equation method for solving nonlinear partial differential equations, Phys. lett. A 309, No. 5 – 6, 387-396 (2003) · Zbl 1011.35035 · doi:10.1016/S0375-9601(03)00196-8
[23]Sirendaoreji: A new auxiliary equation and exact travelling wave solutions of nonlinear equations, Phys. lett. A 356, No. 2, 124-130 (2006) · Zbl 1160.35527 · doi:10.1016/j.physleta.2006.03.034
[24]Sirendaoreji: Auxiliary equation method and new solutions of Klein – Gordon equations, Chaos, solitons fractals 31, No. 4, 943-950 (2007) · Zbl 1143.35341 · doi:10.1016/j.chaos.2005.10.048
[25]Sirendaoreji: A direct method for solving sine – Gordon type equations, Phys. lett. A 298, No. 2 – 3, 133-139 (2002) · Zbl 0995.35056 · doi:10.1016/S0375-9601(02)00513-3
[26]Fan, E. G.: An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations, J. phys. A:Math. Gen. 36, 7009-7206 (2003) · Zbl 1167.35324 · doi:10.1088/0305-4470/36/25/308
[27]Fan, E. G.: Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos, solitons fractals 16, 819-839 (2003) · Zbl 1030.35136 · doi:10.1016/S0960-0779(02)00472-1
[28]Zhang, S.; Xia, T. C.: A generalized new auxiliary equation method and its applications to nonlinear partial differential equations, Phys. lett. A 363, 356-360 (2007) · Zbl 1197.35008 · doi:10.1016/j.physleta.2006.11.035
[29]Malfliet, W.: Solitary wave solutions of nonlinear wave equations, Am. J. Phys. 60, 650-654 (1992) · Zbl 1219.35246 · doi:10.1119/1.17120
[30]Hereman, W.: Exact solitary wave solutions of coupled nonlinear evolution equations using MACSYMA, Comput. phys. Commun. 65, 143-150 (1996) · Zbl 0900.65349 · doi:10.1016/0010-4655(91)90166-I
[31]Parkes, E. J.; Duffy, B. R.: An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations, Comput. phys. Commun. 98, 288-300 (1996) · Zbl 0948.76595 · doi:10.1016/0010-4655(96)00104-X
[32]Fan, E. G.: Extended tanh-function method and its applications to nonlinear equations, Phys. lett. A 277, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[33]Fan, E. G.: Travelling wave solutions for nonlinear equations using symbolic computation, Comput. math. Appl., 43671-43680 (2002)
[34]Hirota, R.: Exact solutions of the Korteweg – de Vries equation for multiple collisions of solitons, Phys. rev. Lett. 27, No. 18, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[35]Hirota, R.; Satsuma, J.: N-soliton solutions of model equations for shallow water waves, J. phys. Soc. jpn. 40, No. 2, 611-612 (1976)
[36]Wazwaz, A. M.: Multiple-soliton solutions for the Lax – Kadomtsev – Petviashvili (Lax – KP) equation, Appl. math. Comput. 201, No. 1/2, 168-174 (2008) · Zbl 1155.65383 · doi:10.1016/j.amc.2007.12.009
[37]Wazwaz, A. M.: Multiple-soliton solutions of two extended model equations for shallow water waves, Appl. math. Comput. 201, No. 1/2, 790-799 (2008) · Zbl 1165.76007 · doi:10.1016/j.amc.2008.01.017
[38]Hereman, W.; Zhuang, W.: Symbolic computation of solitons with macsyma, Computat. appl. Math. II: differ. Equ., 287-296 (1992) · Zbl 0765.35048
[39]W. Hereman, W. Zhuang, A MACSYMA program for the Hirota method, in: Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, 1991, pp. 22 – 26.
[40]Wazwaz, A. M.: Multiple soliton solutions for the (2+1)-dimensional asymmetric Nizhnik – Novikov – Veselov equation, Nonlinear anal. 72, 1314-1318 (2010) · Zbl 1180.35448 · doi:10.1016/j.na.2009.08.012
[41]Hirota, R.: The direct method in soliton theory, (2004)
[42]Hirota, R.: Exact solutions of the modified Korteweg – de Vries equation for multiple collisions of solitons, J. phys. Soc. Japan 33, No. 5, 1456-1458 (1972)
[43]Hirota, R.: Exact solutions of the sine – Gordon equation for multiple collisions of solitons, J. phys. Soc. Japan 33, No. 5, 1459-1463 (1972)
[44]Hietarinta, J.: A search for bilinear equations passing hirotas three-soliton condition. I. KdV-type bilinear equations, J. math. Phys. 28, No. 8, 1732-1742 (1987) · Zbl 0641.35073 · doi:10.1063/1.527815
[45]Hietarinta, J.: A search for bilinear equations passing hirotas three-soliton condition. II. mkdv-type bilinear equations, J. math. Phys. 28, No. 9, 2094-2101 (1987) · Zbl 0658.35081 · doi:10.1063/1.527421