zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a hyperbolic coefficient inverse problem via partial dynamic boundary measurements. (English) Zbl 1200.35321
Summary: This paper is devoted to the identification of the unknown smooth coefficient c entering the hyperbolic equation c(x) t 2 u-Δu=0 in a bounded smooth domain in d from partial (on part of the boundary) dynamic boundary measurements. In this paper, we prove that the knowledge of the partial Cauchy data for this class of hyperbolic PDE on any open subset Γ of the boundary determines explicitly the coefficient c provided that c is known outside a bounded domain. Then, through construction of appropriate test functions by a geometrical control method, we derive a formula for calculating the coefficient c from the knowledge of the difference between the local Dirichlet-to-Neumann maps.
MSC:
35R30Inverse problems for PDE
49J20Optimal control problems with PDE (existence)