zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Principles of delta fractional calculus on time scales and inequalities. (English) Zbl 1201.26001
Summary: Here we develop the Delta Fractional Calculus on Time Scales. Then we produce related integral inequalities of types: Poincaré, Sobolev, Opial, Ostrowski and Hilbert-Pachpatte. Finally, we give inequalities’ applications on the time scale .
MSC:
26A33Fractional derivatives and integrals (real functions)
26D15Inequalities for sums, series and integrals of real functions
26E70Real analysis on time scales or measure chains
References:
[1]Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications, (2001)
[2]Bohner, M.; Guseinov, G. S.: Multiple Lebesgue integration on time scales, Advances in difference equations, 1-12 (2006)
[3]Agarwal, R.; Bohner, M.: Basic calculus on time scales and some of its applications, Results in mathematics 35, No. 1–2, 3-22 (1999) · Zbl 0927.39003
[4]Agarwal, R.; Bohner, M.; Peterson, A.: Inequalities on time scales: a survey, Mathematical inequalities applications 4, No. 4, 535-557 (2001)
[5]G. Anastassiou, Time scales inequalities, International Journal of Difference Equations, 2010 (in press).
[6]Bohner, M.; Guseinov, G.: Double integral calculus of variations on time scales, Computers mathematics with applications 54, 45-57 (2007) · Zbl 1131.49019 · doi:10.1016/j.camwa.2006.10.032
[7]Bohner, M.; Luo, H.: Singular second-order multipoint dynamic boundary value problems with mixed derivatives, Advances in difference equations, 1-15 (2006) · Zbl 1139.39024 · doi:10.1155/ADE/2006/54989
[8]Guseinov, G.: Integration on time scales, Journal of mathematical analysis and applications 285, 107-127 (2003) · Zbl 1039.26007 · doi:10.1016/S0022-247X(03)00361-5
[9]Higgins, R.; Peterson, A.: Cauchy functions and Taylor’s formula for time scales T, New progress in difference equations, 299-308 (2001) · Zbl 1065.39032
[10]S. Hilger, Ein Maßketten kalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, Germany, 1988. · Zbl 0695.34001
[11]Liu, Wenjun; Ngô, Quôc Anh; Chen, Wenbing: Ostrowski type inequalities on time scales for double integrals, Acta applicandae mathematicae 110, 477-497 (2010) · Zbl 1194.26030 · doi:10.1007/s10440-009-9456-y
[12]Whittaker, E. T.; Watson, G. N.: A course in modern analysis, (1927)
[13]Bohner, M.; Guseinov, G.: The convolution on time scales, Abstract and applied analysis 2007 (2007) · Zbl 1155.39010 · doi:10.1155/2007/58373
[14]Atici, F.; Eloe, P.: A transform method in discrete fractional calculus, International journal of difference equations 2, No. #2, 165-176 (2007)
[15]G. Anastassiou, Discrete fractional calculus and inequalities (2009) (submitted for publication).
[16]G. Anastassiou, Nabla discrete fractional calculus and Nabla inequalities, Mathematics and Computer Modelling (2009), in press (doi:10.1016/j.mcm.2009.11.006).