zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Metamodeling the learning-hiding competition between tumours and the immune system: A kinematic approach. (English) Zbl 1201.34071
Summary: The competitive interaction between the Immune System and tumours is very complex, being non-linear and, to some extent, evolutionary. A fundamental aspect of this evolution is the asynchronous process of mutual learning of the two populations involved - the tumoural and the immune cells. In this work, to describe them, we propose a simple non-linear family of super-macroscopic models with non-monotonically time-varying coefficients. Numerical simulations of transitory phases complement the theoretical analysis.
MSC:
34C60Qualitative investigation and simulation of models (ODE)
92C60Medical epidemiology
92C50Medical applications of mathematical biology
References:
[1]De Vito Jr., V. T.; Hellman, J.; Rosenberg, S. A.: Cancer: principles and practice of oncology, (2005)
[2]Boyle, P.; D’onofrio, A.; Maisonneuve, P.; Severi, G.; Robertson, C.; Tubiana, M.; Veronesi, U.: Measuring progress against cancer in Europe: has the 15% decline targeted for 2000 come about?, Annals of oncology 14, 1312-1325 (2003)
[3]Pardoll, D.: Does the immune system see tumors as foreign or self?, Annual review of immunology 21, 807-839 (2003)
[4]Ehrlich, P.: Ueber den jetzigen stand der karzinomforschung, vortrag gehalten vor den studenten der amsterdamer universitaet, vereinigung fuer wissenschaftliche arbeit 1 June 1908, Beitraege zur experimentellen pathologie und chemotherapie, 118-164 (1909)
[5]Dunn, G. P.; Old, L. J.; Schreiber, R. D.: The three ES of cancer immunoediting, Annual review of immunology 22, 322-360 (2004)
[6]Stepanova, N. V.: Course of the immune reaction during the development of a malignant tumor, Biophysica 24, 917-923 (1980)
[7]Kuznetsov, V. A.; Makalkin, I. A.; Taylor, M. A.; Perelson, A. S.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bulletin of mathematical biology 56, 295-321 (1994) · Zbl 0789.92019
[8]Kuznetsov, V. A.; Knott, G. D.: Modeling tumor regrowth and immunotherapy, Mathematical and computer modelling 33, 1275-1287 (2001) · Zbl 1004.92021 · doi:10.1016/S0895-7177(00)00314-9
[9]De Pillis, L. G.; Radunskaya, A. E.; Wiseman, C. L.: A validated mathematical model of cell-mediated immune response to tumor growth, Cancer research 65, 7950-7958 (2005)
[10]D’onofrio, A.: A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences, Physica D 208, 220-235 (2005) · Zbl 1087.34028 · doi:10.1016/j.physd.2005.06.032
[11]D’onofrio, A.: Tumor-immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy, Mathematical models and methods in applied sciences 16, 1375-1401 (2006) · Zbl 1094.92040 · doi:10.1142/S0218202506001571
[12]D’onofrio, A.: Tumor evasion from immune system control: strategies of a MISS to become a MASS, Chaos, solitons and fractals 31, 261-268 (2007) · Zbl 1133.92016 · doi:10.1016/j.chaos.2005.10.006
[13]D’onofrio, A.: Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Mathematical and computer modelling 47, 614-637 (2008)
[14]Bellomo, N.; Bellouquid, A.; Delitala, M.: Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition, Mathematical models and methods in applied sciences 14, 1683-1733 (2004) · Zbl 1060.92029 · doi:10.1142/S0218202504003799
[15]Bellomo, N.; Delitala, M.: From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Physics of life review 5, 183-206 (2008)
[16]Bellomo, N.: Modeling complex living systems–kinetic theory and stochastic game approach, (2008)
[17]Bellouquid, A.; Delitala, M.: Mathematical modeling of complex biological systems. A kinetic theory approach, (2006)
[18]Cattani, C.; Ciancio, A.: Qualitative analysis of second order models of tumor-immune system competition, Mathematical and computer modelling 47, 1339-1355 (2008) · Zbl 1145.34303 · doi:10.1016/j.mcm.2007.07.005
[19]Cattani, C.; Ciancio, A.: Third order model for tumor-immune system competition, , 30-37 (2007) · Zbl 1132.34319
[20]Melief, C. J. M.: Cancer immunology: cat and mouse games, Nature 437, 41-42 (2005)
[21]Abrams, D.: The evolution of predator–prey systems: theory and evidence, Annual review of ecological systems 31, 79-105 (2000)
[22]Cheon, T.: Evolutionary stability of ecological hierarchy, Physical review letters 90 (2003)
[23]Bobryk, R. B.; Chrzeszczyk, A.: Transitions induced by bounded noise, Physica A 358, 263-272 (2005)
[24]Thieme, H. R.: Mathematics in population biology, (2003)
[25]Hale, J. K.; Kocack, H.: Dynamics and bifurcations, (2003)
[26]Cucker, F.; Smale, S.: On the mathematical foundations of learning, Bulletin of the American mathematical society (New series) 39, 1-49 (2002) · Zbl 0983.68162 · doi:10.1090/S0273-0979-01-00923-5
[27]Cattani, C.; Ciancio, A.: Hybrid two scales mathematical tools for active particles modelling complex systems with learning hiding dynamics, Mathematical modelling and methods in applied sciences 17, 171-187 (2007) · Zbl 1142.82019 · doi:10.1142/S0218202507001875