zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solutions to integral equations equivalent to differential equations with fractional time. (English) Zbl 1201.35020
This paper presents an approximate method of solving a fractional (in the time variable) equation which describes the processes lying between heat and wave behavior. In most of applications related to fractional differential or fractional integro-differential equations, the numerical methods are limited to 1+1 (time + space) dimensions. This paper presents a different method for solving a fractional integro-differential equation which can handle more dimensional cases within a good approximation. The method is limited to cases when the initial condition is smooth enough with respect to space variables x. In such cases the approach works also for (1+2) and (1+3) dimensions. More precisely the approximation consists in the application of a finite subspace of an infinite basis in the time variable (Galerkin method) and discretization in space variables. In the final step, a large-scale system of linear equations with a non-symmetric matrix is solved with the use of the iterative GMRES method.
35A35Theoretical approximation to solutions of PDE
45D05Volterra integral equations
65R20Integral equations (numerical methods)
35R09Integro-partial differential equations
35R11Fractional partial differential equations