zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Well-posedness of parabolic differential and difference equations. (English) Zbl 1201.35064
Summary: We consider the abstract parabolic differential equation u ' (t)+Au(t)=f(t), -<t< in a Banach space E with - A the infinitesimal generator of an analytic, exponentially decreasing semigroup exp{-tA} (t0). The main purpose of this paper is to establish the well-posedness of this equation in C β (,E α , (α,β[0,1]), and the well-posedness of the corresponding Rothe difference scheme in C β ( τ ,E α , (α,β[0,1]). Moreover, we apply our theoretical results to obtain new coercivity inequalities for the solution of parabolic difference equations.
MSC:
35B65Smoothness and regularity of solutions of PDE
65M06Finite difference methods (IVP of PDE)
References:
[1]Ashyralyev, A.; Sobolevskii, P. E.: Well-posedness of parabolic difference equations, Operator theory and appl. (1994)
[2]Ashyralyev, A.; Sözen, Y.; Sobolevskii, P. E.: A note on the parabolic differential and difference equations, Abstr. appl. Anal. 2007, 1-16 (2007) · Zbl 1153.35353 · doi:10.1155/2007/61659
[3]Hino, Y.; Murakami, S.; Yoshizawa, T.: Existence of almost periodic solutions of some functional differential equations with infinite delay in a Banach space, Tôhoku math. J. 49, 133-147 (1997) · Zbl 0876.34077
[4]Kaplan, S.: Abstract boundary value problems for linear parabolic equations, Ann. sc. Norm. super. Pisa cl. Sci. ser. 3e 20, No. 2, 395-419 (1966) · Zbl 0163.12903 · doi:numdam:ASNSP_1966_3_20_2_395_0
[5]Yamada, Y.; Nııkura, Y.: Bifurcation of periodic solutions for nonlinear parabolic equations with infinite delay, Funkcial. ekvac. 29, 309-333 (1986) · Zbl 0624.35007
[6]Zaidmann, S.: Structure of bounded solutions for a class of abstract differential equations, Ann. univ. Ferrara sez. VII sci. Mat. 22, 43-47 (1976) · Zbl 0344.34056
[7]Zhang, B.: Periodic solutions of nonlinear abstract differential equations with infinite delay, Funkcial. ekvac. 36, 433-478 (1993) · Zbl 0794.34068
[8]H.C. Simpson, Periodic solutions of integrodifferential equations which arise in population dynamics, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1979.
[9]Muravnik, A. B.: On Cauchy problem for parabolic differential–difference equations, Nonlinear anal. 51, 215-238 (2002) · Zbl 1010.35111 · doi:10.1016/S0362-546X(01)00821-5
[10]Ladyzhenskaya, O. A.; Solonnikov, V. A.; Ural’tseva, N. N.: Linear and quasilinear equations of parabolic type, (1967) · Zbl 0164.12302
[11]Sobolevskii, P. E.: Well-posedness of difference elliptic equation, Discrete dyn. Nat. soc. 1, No. 3, 219-231 (1997) · Zbl 0928.39002 · doi:10.1155/S1026022697000228
[12]Vishik, M. I.; Myshkis, A. D.; Oleinik, O. A.: Partial differential equations, Mathematics in USSR in the last 40 years, 1917–1957 1, 563-599 (1959)
[13]Alibekov, Kh.A.; Sobolevskii, P. E.: Stability of difference schemes for parabolic equations, Dokl. akad. Nauk 232, No. 4, 737-740 (1977) · Zbl 0416.65063
[14]Amann, H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. nachr. 186, 5-55 (1997) · Zbl 0880.42007 · doi:10.1002/mana.3211860102
[15]Ashyralyev, A. O.; Sobolevskii, P. E.: The linear operator interpolation theory and the stability of difference–schemes, Dokl. akad. Nauk 275, No. 6, 1289-1291 (1984) · Zbl 0598.65038
[16]Ashyralyev, A.; Sobolevskii, P. E.: Difference schemes of the high-order accuracy for parabolic equations with variable-coefficients, Dopov. nats. Akad. nauk ukr. Mat. prirodozn. Tekh. nauki 6, 3-7 (1988) · Zbl 0652.65063
[17]A. Ashyralyev, A. Hanalyev, P.E. Sobolevskii, Coercive solvability of nonlocal boundary value problem for parabolic equations, 6 (1) (2001) 53–61. · Zbl 0996.35027 · doi:10.1155/S1085337501000495
[18]Ashyralyev, A.; Piskarev, S.; Weis, L.: On well-posedness of the difference schemes for abstract parabolic equations in Lp([0,1],E) spaces, Numer. funct. Anal. optim. 23, No. 7–8, 669-693 (2002) · Zbl 1022.65095 · doi:10.1081/NFA-120016264
[19]Ashyralyev, A.; Sobolevskii, P. E.: New difference schemes for partial differential equations, Operator theory and appl. (2004)
[20]Ashyralyev, A.: Nonlocal boundary value problems for abstract parabolic difference equations, well-posedness in Bochner spaces, J. evol. Equ. 6, No. 1, 1-28 (2006) · Zbl 1117.65077 · doi:10.1007/s00028-005-0194-y
[21]Da Prato, G.; Grisvard, P.: Sommes d’opérateus linéaires et équations différentielles opérationnelles, J. math. Pures appl. (9) 54, No. 3, 305-387 (1975) · Zbl 0315.47009
[22]Da Prato, G.; Grisvard, P.: Équations d’évolution abstraites non linéaires de type parabolique, C. R. Math. acad. Sci. Paris A–B 283, No. 9, A709-A711 (1976) · Zbl 0356.35048
[23]Guidetti, D.; Karasozen, B.; Piskarev, S.: Approximation of abstract differential equations, J. math. Sci. (NY) 122, No. 2, 3013-3054 (2004) · Zbl 1111.47063 · doi:10.1023/B:JOTH.0000029696.94590.94
[24]Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems, (1995)
[25]Polichka, A. E.; Sobolevskii, P. E.: Correct solvability of parabolic difference equations in Bochner spaces, Trans. Moscow math. Soc. 36, 29-57 (1978) · Zbl 0464.65025
[26]Shakhmurov, V. B.: Coercive boundary value problems for regular degenerate differential operator equations, J. math. Anal. appl. 292, No. 2, 605-620 (2004) · Zbl 1060.35045 · doi:10.1016/j.jmaa.2003.12.032
[27]Shakhmurov, V. B.; Agarwal, R. P.: Linear and nonlinear degenerate boundary value problems in Besov spaces, Math. comput. Modelling 49, No. 5–6, 1244-1259 (2009) · Zbl 1165.35475 · doi:10.1016/j.mcm.2008.04.008
[28]Sobolevskii, P. E.: Coerciveness inequalities for abstract parabolic equations, Dokl. akad. Nauk 157, No. 1, 52-55 (1964) · Zbl 0149.36001
[29]Sobolevskii, P. E.: The coercive solvability of difference equations, Dokl. akad. Nauk SSSR 201, No. 5, 1063-1066 (1971) · Zbl 0246.39002
[30]Sobolevskii, P. E.: Some properties of the solutions of differential equations in fractional spaces, Trudy mat. Fak., voronezh. GoS univ. (NS) 14, 68-74 (1974)
[31]Smirnitskii, Yu.A.; Sobolevskii, P. E.: The positivity of difference operators, Vychisl. sistemy 87, 120-133 (1981) · Zbl 0516.47019
[32]Tribel, H.: Interpolation theory, function spaces, differential operators, (1978) · Zbl 0387.46033