zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On some new difference sequence spaces of non-absolute type. (English) Zbl 1201.40003
Summary: We introduce the spaces c 0 λ (Δ) and c λ (Δ) of difference sequences which are the BK-spaces of non-absolute type and prove that these spaces are linearly isomorphic to the spaces c 0 and c, respectively. We also derive some inclusion relations. Furthermore, we determine the α-,β- and γ-duals of those spaces and construct their bases. Finally, we characterize some matrix classes concerning the spaces c 0 λ (Δ) and c λ (Δ).

40C05Matrix methods in summability
[1]Choudhary, B.; Nanda, S.: Functional analysis with applications, (1989) · Zbl 0698.46001
[2]Wang, C. -S.: On nörlund sequence spaces, Tamkang J. Math. 9, 269-274 (1978) · Zbl 0415.46009
[3]Ng, P. -N.; Lee, P. -Y.: Cesàro sequence spaces of non-absolute type, Comment. math. Prace mat. 20, No. 2, 429-433 (1978) · Zbl 0408.46012
[4]Malkowsky, E.; Savaş, E.: Matrix transformations between sequence spaces of generalized weighted means, Appl. math. Comput. 147, No. 2, 333-345 (2004) · Zbl 1036.46001 · doi:10.1016/S0096-3003(02)00670-7
[5]Malkowsky, E.: Recent results in the theory of matrix transformations in sequence spaces, Mat. vesnik 49, 187-196 (1997) · Zbl 0942.40006
[6]Altay, B.; Başar, F.: On the paranormed Riesz sequence spaces of non-absolute type, Southeast asian bull. Math. 26, No. 5, 701-715 (2002) · Zbl 1058.46002
[7]Altay, B.; Başar, F.: Some Euler sequence spaces of non-absolute type, Ukrainian math. J. 57, No. 1, 1-17 (2005) · Zbl 1096.46011 · doi:10.1007/s11253-005-0168-9
[8]Altay, B.; Başar, F.; Mursaleen, M.: On the Euler sequence spaces which include the spaces p and I, Inform. sci. 176, No. 10, 1450-1462 (2006) · Zbl 1101.46015 · doi:10.1016/j.ins.2005.05.008
[9]Aydın, C.; Başar, F.: On the new sequence spaces which include the spaces c0 and c, Hokkaido math. J. 33, No. 2, 383-398 (2004) · Zbl 1085.46002
[10]Aydın, C.; Başar, F.: Some new paranormed sequence spaces, Inform. sci. 160, No. 1–4, 27-40 (2004) · Zbl 1049.46002 · doi:10.1016/j.ins.2003.07.009
[11]Aydın, C.; Başar, F.: Some new sequence spaces which include the spaces p and , Demonstratio math. 38, No. 3, 641-656 (2005) · Zbl 1096.46005
[12]Şengönül, M.; Başar, F.: Some new Cesàro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math. 31, No. 1, 107-119 (2005) · Zbl 1085.46500
[13]Başarır, M.: On some new sequence spaces and related matrix transformations, Indian J. Pure appl. Math. 26, No. 10, 1003-1010 (1995) · Zbl 0855.40005
[14]Altay, B.; Başar, F.; Malkowsky, E.: Matrix transformations on some sequence spaces related to strong Cesàro summability and boundedness, Appl. math. Comput. 211, No. 2, 255-264 (2009) · Zbl 1171.40002 · doi:10.1016/j.amc.2009.01.062
[15]Aydın, C.; Başar, F.: Some new difference sequence spaces, Appl. math. Comput. 157, No. 3, 677-693 (2004) · Zbl 1072.46007 · doi:10.1016/j.amc.2003.08.055
[16]Başar, F.; Altay, B.: On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian math. J. 55, No. 1, 136-147 (2003) · Zbl 1040.46022 · doi:10.1023/A:1025080820961
[17]Kızmaz, H.: On certain sequence spaces, Canad. math. Bull. 24, No. 2, 169-176 (1981) · Zbl 0454.46010 · doi:10.4153/CMB-1981-027-5
[18]Malkowsky, E.; Mursaleen, M.; Suantai, S.: The dual spaces of sets of difference sequences of order m and matrix transformations, Acta math. Sinica 23, No. 3, 521-532 (2007) · Zbl 1123.46007 · doi:10.1007/s10114-005-0719-x
[19]M. Mursaleen, A.K. Noman, On the spaces of λ-convergent and bounded sequences, Thai J. Math. 8 (2) (2010) (in press). · Zbl 1218.46005 · doi:http://www.math.science.cmu.ac.th/thaijournal/allissue82.html
[20]Maddox, I. J.: Elements of functional analysis, (1988)
[21]Wilansky, A.: Summability through functional analysis, North-holland mathematics studies 85 (1984) · Zbl 0531.40008
[22]Stieglitz, M.; Tietz, H.: Matrixtransformationen von folgenräumen eine ergebnisübersicht, Math. Z. 154, 1-16 (1977) · Zbl 0331.40005 · doi:10.1007/BF01215107
[23]Mursaleen, M.; Başar, F.; Altay, B.: On the Euler sequence spaces which include the spaces p and II, Nonlinear anal. TMA 65, No. 3, 707-717 (2006) · Zbl 1108.46019 · doi:10.1016/j.na.2005.09.038