zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Ordered cone metric spaces and fixed point results. (English) Zbl 1201.65084
Summary: We introduce a partial order on a cone metric space and prove a Caristi-type theorem. Furthermore, we prove fixed point theorems for single-valued nondecreasing and weakly increasing mappings, and multi-valued mappings on an ordered cone metric space.
MSC:
65J15Equations with nonlinear operators (numerical methods)
47H10Fixed point theorems for nonlinear operators on topological linear spaces
References:
[1]Abbas, M.; Jungck, G.: Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. math. Anal. appl. 341, 416-420 (2008) · Zbl 1147.54022 · doi:10.1016/j.jmaa.2007.09.070
[2]Di Bari, C.; Vetro, P.: φ-pairs and common fixed points in cone metric spaces, Rend. circ. Mat. Palermo 57, 279-285 (2008) · Zbl 1164.54031 · doi:10.1007/s12215-008-0020-9
[3]Di Bari, C.; Vetro, P.: Weakly φ-pairs and common fixed points in cone metric spaces, Rend. circ. Mat. Palermo 58, 125-132 (2009) · Zbl 1197.54060 · doi:10.1007/s12215-009-0012-4
[4]Haghi, R. H.; Rezapour, Sh.: Fixed points of multifunctions on regular cone metric spaces, Expo. math. 28, 71-77 (2010) · Zbl 1193.47058 · doi:10.1016/j.exmath.2009.04.001
[5]Huang, L. G.; Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings, J. math. Anal. appl. 332, 1468-1476 (2007) · Zbl 1118.54022 · doi:10.1016/j.jmaa.2005.03.087
[6]Ilić, D.; Rakočević, V.: Common fixed points for maps on cone metric space, J. math. Anal. appl. 341, 876-882 (2008) · Zbl 1156.54023 · doi:10.1016/j.jmaa.2007.10.065
[7]Rezapour, Sh.; Haghi, R. H.: Fixed point of multifunctions on cone metric spaces, Numer. funct. Anal. optim. 30, No. 7–8, 825-832 (2009) · Zbl 1171.54033 · doi:10.1080/01630560903123346
[8]Abbas, M.; Rhoades, B. E.: Fixed and periodic point results in cone metric spaces, Appl. math. Lett. 22, 511-515 (2009) · Zbl 1167.54014 · doi:10.1016/j.aml.2008.07.001
[9]Abdeljawad, T.; Karapinar, E.: Quasicone metric spaces and generalizations of caristi kirk’s theorem, Fixed point theory appl. (2009) · Zbl 1197.54051 · doi:10.1155/2009/574387
[10]Altun, I.; Damjanović, B.; Djorić, D.: Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. math. Lett. 23, 310-316 (2010) · Zbl 1197.54052 · doi:10.1016/j.aml.2009.09.016
[11]Altun, I.; Durmaz, G.: Some fixed point theorems on ordered cone metric spaces, Rend. circ. Mat. Palermo 58, 319-325 (2009) · Zbl 1184.54038 · doi:10.1007/s12215-009-0026-y
[12]Arshad, M.; Azam, A.; Beg, I.: Common fixed points of two maps in cone metric spaces, Rend. circ. Mat. Palermo 57, 433-441 (2008) · Zbl 1197.54056 · doi:10.1007/s12215-008-0032-5
[13]Arshad, M.; Azam, A.; Vetro, P.: Some common fixed point results in cone metric spaces, Fixed point theory appl. (2009)
[14]Azam, A.; Arshad, M.: Common fixed points of generalized contractive maps in cone metric spaces, Bull. iranian math. Soc. 35, No. 2, 255-264 (2009) · Zbl 1201.47052
[15]Ilić, D.; Rakočević, V.: Quasi-contraction on cone metric spaces, Appl. math. Lett. 22, 728-731 (2009) · Zbl 1179.54060 · doi:10.1016/j.aml.2008.08.011
[16]Janković, S.; Kadelburg, Z.; Radenović, S.; Rhoades, B. E.: Assad–kirk-type fixed point theorems for a pair of nonself mappings on cone metric spaces, Fixed point theory appl. (2009) · Zbl 1186.54035 · doi:10.1155/2009/761086
[17]Kadelburg, Z.; Pavlović, M.; Radenović, S.: Common fixed point theorems for ordered contractions and quasi-contractions in ordered cone metric spaces, Comput. math. Appl. 59, 3148-3159 (2010) · Zbl 1193.54035 · doi:10.1016/j.camwa.2010.02.039
[18]Kadelburg, Z.; Radenović, S.; Rakočević, V.: Remarks on ”quasi-contraction on a cone metric space”, Appl. math. Lett. 22, 1674-1679 (2009) · Zbl 1180.54056 · doi:10.1016/j.aml.2009.06.003
[19]Kadelburg, Z.; Radenović, S.; Rosić, B.: Strict contractive conditions and common fixed point theorems in cone metric spaces, Fixed point theory appl. (2009)
[20]Kilm, D.; Wardowski, D.: Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric spaces, Nonlinear anal. 71, 5170-5175 (2009) · Zbl 1203.54042 · doi:10.1016/j.na.2009.04.001
[21]Radenović, S.: Common fixed points under contractive conditions in cone metric spaces, Comput. math. Appl. 58, 1273-1278 (2009) · Zbl 1189.65119 · doi:10.1016/j.camwa.2009.07.035
[22]Radenović, S.; Rhoades, B. E.: Fixed point theorem for two non-self mappings in cone metric spaces, Comput. math. Appl. 57, 1701-1707 (2009) · Zbl 1186.65073 · doi:10.1016/j.camwa.2009.03.058
[23]Rezapour, Sh.; Derafshpour, M.; Shahzad, N.: Best proximity points of cyclic φ-contractions on reflexive Banach spaces, Fixed point theory appl. (2010) · Zbl 1197.47071 · doi:10.1155/2010/946178
[24]Rezapour, Sh.; Haghi, R. H.; Shahzad, N.: Some notes on fixed points of quasicontraction maps, Appl. math. Lett. 23, 498-502 (2010) · Zbl 1206.54061 · doi:10.1016/j.aml.2010.01.003
[25]Rezapour, Sh.; Hamlbarani, R.: Some notes on the paper ”cone metric spaces and fixed point theorems of contractive mappings ”, J. math. Anal. appl. 345, 719-724 (2008) · Zbl 1145.54045 · doi:10.1016/j.jmaa.2008.04.049
[26]Rezapour, Sh.; Khandani, H.; Vaezpour, S. M.: Efficacy of cones on topological vector spaces and application to common fixed points of multifunctions, Rend. circ. Mat. Palermo 59, 185-197 (2010) · Zbl 1198.54087 · doi:10.1007/s12215-010-0014-2
[27]Wardowski, D.: Endpoints and fixed points of set-valued contractions in cone metric spaces, Nonlinear anal. 71, 512-516 (2009) · Zbl 1169.54023 · doi:10.1016/j.na.2008.10.089
[28]Wei-Shih, D.: A note on cone metric fixed point theory and its equivalence, Nonlinear anal. 72, 2259-2261 (2010) · Zbl 1205.54040 · doi:10.1016/j.na.2009.10.026
[29]Wlodarczyk, K.; Plebaniak, R.; Obczynski, C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces, Nonlinear anal. 72, 794-805 (2010) · Zbl 1185.54020 · doi:10.1016/j.na.2009.07.024
[30]Altun, I.; Simsek, H.: Some fixed point theorems on ordered metric spaces and application, Fixed point theory appl. (2010) · Zbl 1197.54053 · doi:10.1155/2010/621469
[31]Harjani, J.; Sadarangani, K.: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear anal. 72, 1188-1197 (2010) · Zbl 1220.54025 · doi:10.1016/j.na.2009.08.003
[32]Zhao, Z.; Chen, X.: Fixed points of decreasing operators in ordered Banach spaces and applications to nonlinear second order elliptic equations, Comput. math. Appl. 58, 1223-1229 (2009) · Zbl 1191.47075 · doi:10.1016/j.camwa.2009.06.050
[33]Brøndsted, A.: On a lemma of Bishop and phelps, Pacific J. Math. 55, 335-341 (1974)
[34]Feng, Y.; Liu, S.: Fixed point theorems for multi-valued increasing operators in partially ordered spaces, Soochow J. Math. 30, No. 4, 461-469 (2004) · Zbl 1084.47046
[35]Dhage, B. C.: Condensing mappings and applications to existence theorems for common solution of differential equations, Bull. korean math. Soc. 36, No. 3, 565-578 (1999) · Zbl 0940.47043
[36]Dhage, B. C.; O’regan, D.; Agarwal, R. P.: Common fixed point theorems for a pair of countably condensing mappings in ordered Banach spaces, J. appl. Math. stoch. Anal. 16, No. 3, 243-248 (2003) · Zbl 1068.47071 · doi:10.1155/S1048953303000182