zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modified simple equation method for nonlinear evolution equations. (English) Zbl 1201.65119
Summary: This paper reflects the implementation of a reliable technique which is called modified simple equation method (MSEM) for solving evolution equations. The proposed algorithm has been successfully tested on two very important evolution equations namely Fitzhugh-Nagumo equation and Sharma-Tasso-Olver equation. Numerical results are very encouraging.

MSC:
65L05Initial value problems for ODE (numerical methods)
34A25Analytical theory of ODE (series, transformations, transforms, operational calculus, etc.)
34A34Nonlinear ODE and systems, general
65M70Spectral, collocation and related methods (IVP of PDE)
35Q92PDEs in connection with biology and other natural sciences
35Q40PDEs in connection with quantum mechanics
References:
[1]Abdou, M. A.; Soliman, A. A.: New applications of variational iteration method, Physica D 211, No. 1 – 2, 1-8 (2005) · Zbl 1084.35539 · doi:10.1016/j.physd.2005.08.002
[2]Bekir, A.; Boz, A.: Exact solutions for nonlinear evolution equation using exp-function method, Physics letters A 372, 1619-1625 (2008) · Zbl 1217.35151 · doi:10.1016/j.physleta.2007.10.018
[3]Chen, A.: New kink solutions and soliton fission and fusion of Sharma – Tasso – Olver equation, Physics letters A 374, No. 23, 2340-2345 (2010)
[4]G. Ebadi, A. Biswas, Application of the G ' /G expansion method for nonlinear diffusion equation with nonlinear source terms, Journal of Franklin Institute, in press.
[5]N.A. Kudryashov, Analytical Theory of Nonlinear Differential Equations, Institute of Computer Investigations, 2004, pp. 360 – 366.
[6]N.A. Kudryashov, N.B. Loguinova, Be Careful with Exp-function Method, Department of Applied Mathematics, Moscow Engineering and Physics Institute, 2006.
[7]Pan, J. -T.; Chen, W. -Z.: A new auxilliary equation method and its application to the Sharma – Tasso – Olver equation, Physics letters A 373, No. 35, 3118-3121 (2009) · Zbl 1233.34004 · doi:10.1016/j.physleta.2008.04.074
[8]Shang, Y.; Qin, J.; Huang, Y.; Yuan, W.: Abundant exact and explicit solitary wave and periodic wave solutions to the Sharma – Tasso – Olver equation, Applied mathematics and computation 202, No. 2, 532-538 (2008) · Zbl 1151.65076 · doi:10.1016/j.amc.2008.02.034
[9]Song, L.; Wang, Q.; Zhang, H.: Rational approximation solution to the fractional Sharma – Tasso – Olver equation, Journal of computational and applied mathematics 224, No. 1, 210-218 (2009) · Zbl 1157.65074 · doi:10.1016/j.cam.2008.04.033
[10]Wazwaz, A. -M.: New solitons and kink solutions to the Sharma – Tasso – Olver equation, Applied mathematics and computation. 188, No. 2, 1205-1213 (2007) · Zbl 1118.65113 · doi:10.1016/j.amc.2006.10.075
[11]Yefimova, O. Yu.; Kudryashov, N. A.: Exact solutions of the Burgers – Huxley equation, Journal of applied mathematics and mechanics 68, No. 3, 413-420 (2004) · Zbl 1092.35084 · doi:10.1016/S0021-8928(04)00055-3
[12]Y. Zhou, Q. Liu, F. Yang, Reduction of the Sharma – Tasso – Olver equation and series solutions, Communications in Nonlinear Science and Numerical Simulation, in press.