zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of system of nonlinear second-order integro-differential equations. (English) Zbl 1201.65138
Summary: Numerical solution of a system of nonlinear second-order integro-differential equations with boundary conditions of the Fredholm and Volterra types by means of the Sinc-collocation method is considered. The method is effective for approximation in the case of the presence of end-point singularities. Properties of the Sinc-collocation method required for our subsequent development are given and utilized to reduce the computation of boundary value problems to some algebraic equations. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.
MSC:
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
45J05Integro-ordinary differential equations
References:
[1]Linz, P.: Analytical and numerical methods for Volterra equations, (1985)
[2]Jerri, J. Abdul: Introduction to integral equations with applications, (1999) · Zbl 0938.45001
[3]Abbasbandy, S.; Taati, A.: Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the operational tau method and error estimation, J. comput. Appl. math. 231, 106-113 (2009) · Zbl 1170.65101 · doi:10.1016/j.cam.2009.02.014
[4]Khani, A.; Moghadam, M. Mohseni; Shahmorad, S.: Numerical solution of special class of system of non-linear Volterra integro-differential equations by a simple high accuracy method, Bull. iran. Math. soc. 34, No. 2, 141-152 (2008) · Zbl 1168.65428
[5]Ebadi, G.; Rahimi, M. Y.; Shahmorad, S.: Numerical solution of the system of nonlinear Fredholm integro-differential equations by the operational tau method with an error estimation, Sci. iran. 14, 546-554 (2007) · Zbl 1178.65146
[6]Stenger, F.: Numerical methods based on sinc and analytic functions, (1993)
[7]Lund, J.; Bowers, K.: Sinc methods for quadrature and differential equations, (1992) · Zbl 0753.65081
[8]Eggert, N.; Jarratt, M.; Lund, J.: Sinc function computations of the eigenvalues of Sturm–lioville problems, J. comput. Phys. 69, 209-229 (1987) · Zbl 0618.65073 · doi:10.1016/0021-9991(87)90163-X
[9]Lund, J.; Rilay, B. V.: A sinc-collocation method for the computation of the eigenvalues of the radial Schrödinger equation, IMA J. Numer. anal. 4, 83-98 (1984) · Zbl 0544.65057 · doi:10.1093/imanum/4.1.83
[10]Carlson, T. S.; Dockery, J.; Lund, J.: A sinc-collocation method for initial value problems, Math. comp. 66, 215-235 (1997) · Zbl 0854.65054 · doi:10.1090/S0025-5718-97-00789-8
[11]Al-Khaled, K.: Sinc numerical solution for solitons and solitary waves, J. comput. Appl. math. 130, 283-292 (2001) · Zbl 1010.65043 · doi:10.1016/S0377-0427(99)00376-3
[12]El-Gamel, M.: Sinc and the numerical solution of fifth-order boundary value problems, Appl. math. Comput. 187, 1417-1433 (2007) · Zbl 1121.65087 · doi:10.1016/j.amc.2006.09.049
[13]Weber, V.; Daul, C.; Baltensperger, R.: Radial numerical integrations based on the sinc function, Comput. phys. Commun. 163, 133-142 (2004) · Zbl 1196.65056 · doi:10.1016/j.cpc.2004.08.008
[14]Koonprasert, S.; Bowers, K. L.: Block matrix sinc–Galerkin solution of the wind-driven current problem, Appl. math. Comput. 155, 607-635 (2004) · Zbl 1126.65320 · doi:10.1016/S0096-3003(03)00802-6
[15]Rashidinia, J.; Zarebnia, M.: Solution of a Volterra integral equation by the sinc-collocation method, J. comput. Appl. math. 206, 801-813 (2007) · Zbl 1120.65136 · doi:10.1016/j.cam.2006.08.036
[16]Rashidinia, J.; Zarebnia, M.: Convergence of approximate solution of system of Fredholm integral equations, J. math. Anal. appl. 333, 1216-1227 (2007) · Zbl 1120.65137 · doi:10.1016/j.jmaa.2006.12.016
[17]Abdella, K.; Yu, X.; Kucuk, I.: Application of the sinc method to a dynamic elasto-plastic problem, J. comput. Appl. math. 223, 626-645 (2009) · Zbl 1153.74051 · doi:10.1016/j.cam.2008.02.003
[18]Stenger, F.: Fourier series for zeta function via sinc, Linear algebra appl. 429, 2636-2639 (2008) · Zbl 1149.42002 · doi:10.1016/j.laa.2008.01.037
[19]Stenger, F.: Polynomial function and derivative approximation of sinc data, J. complexity 25, 292-302 (2009) · Zbl 1180.65028 · doi:10.1016/j.jco.2009.02.010