zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An exact solution of a limit case Stefan problem governed by a fractional diffusion equation. (English) Zbl 1201.80065
Summary: An anomalous diffusion version of a limit Stefan melting problem is posed. In this problem, the governing equation includes a fractional time derivative of order 0<β1 and a fractional space derivative for the flux of order 0<α1. Solution of this fractional Stefan problem predicts that the melt front advance as s=t γ ,γ=β α+1. This result is consistent with fractional diffusion theory and through appropriate choice of the order of the time and space derivatives, is able to recover both sub-diffusion and super-diffusion behaviors for the melt front advance.
80A22Stefan problems, phase changes, etc.
26A33Fractional derivatives and integrals (real functions)
[1]Crank, J.: Free and moving boundary problems, (1984) · Zbl 0547.35001
[2]Juric, D.; Tryggvason, G.: A front tracking method for dendritic solidification, J. comp. Phys. 123, 127-148 (1996) · Zbl 0843.65093 · doi:10.1006/jcph.1996.0011
[3]Chen, S.; Merriman, B.; Osher, S.; Smereka, P.: A simple level set method for solving Stefan problems, J. comp. Phys. 135, 8-29 (1997) · Zbl 0889.65133 · doi:10.1006/jcph.1997.5721
[4]Karma, A.; Rappel, W. -J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. rev. E 57, 4323-4349 (1998) · Zbl 1086.82558 · doi:10.1103/PhysRevE.57.4323
[5]Beckermann, C.; Diepers, H. -J.; Steinbach, I.; Karma, A.; Tong, X.: Modeling melt convection in phase-field simulations of solidification, J. comp. Phys. 154, 468-496 (1999) · Zbl 0960.82015 · doi:10.1006/jcph.1999.6323
[6]Kim, Y. -T.; Goldenfeld, N.; Dantzig, J.: Computation of dendritic microstructures using a level set method, Phys. rev. E 62, 2471-2474 (2000)
[7]Udaykumar, H. S.; Marella, S.; Krishnan, S.: Sharp-interface simulation of dendritic growth with convection: benchmarks, Int. J. Heat mass transfer 46, 2615-2627 (2003) · Zbl 1037.76064 · doi:10.1016/S0017-9310(03)00038-3
[8]Pal, D.; Bhattacharya, J.; Dutta, P.; Chakraborty, S.: An enthalpy model for simulation of dendritic growth, Numer. heat transfer B 50, 59-78 (2006)
[9]Voller, V. R.: An enthalpy method for modeling dendritic growth in a binary alloy, Int. J. Heat mass transfer 51, 823-834 (2008) · Zbl 1132.80315 · doi:10.1016/j.ijheatmasstransfer.2007.04.025
[10]Swenson, J. B.; Voller, V. R.; Paola, C.; Parker, G.; Marr, J. G.: Fluvio-deltaic sedimentation: a generalized Stefan problem, Euro. J. App. math. 11 (2000) · Zbl 0964.80005 · doi:10.1017/S0956792500004198
[11]Marr, J. G.; Swenson, J. B.; Paola, C.; Voller, V. R.: A two-diffusion model of fluvial stratigraphy in closed depositional basins, Basin research 12, 381-398 (2000)
[12]Voller, V. R.; Swenson, J. B.; Paola, C.: An analytical solution for a Stefan problem with variable latent heat, Int. J. Heat mass transfer 47, 5387-5390 (2004) · Zbl 1077.80004 · doi:10.1016/j.ijheatmasstransfer.2004.07.007
[13]Capart, H.; Bellal, M.; Young, D. L.: Self-similar evolution of semi-infinite alluvial channels with moving boundaries, J. sediment. Res. 77, 13-22 (2007)
[14]Lai, S. Y. J.; Capart, H.: Two-diffusion description of hyperpycnal deltas, J. geophys. Res. 112, F03005 (2007)
[15]Lai, S. Y. J.; Capart, H.: Reservoir infill by hyperpycnal deltas over bedrock, Geophys. res. Lett. 36, L08402 (2009)
[16]Lorenzo-Trueba, J.; Voller, V. R.; Muto, T.; Kim, W.; Paola, C.; Swenson, J. B.: A similarity solution for a dual moving boundary problem associated with a coastal-plain depositional system, J. fluid mech. 628, 427-443 (2009) · Zbl 1181.76114 · doi:10.1017/S0022112009006715
[17]Voller, V. R.; Swenson, J. B.; Kim, W.; Paola, C.: An enthalpy method for moving boundary problems on the Earth’s surface, Int. J. Numer. meth. Heat fluid flow 16, 641-654 (2006) · Zbl 1121.86006 · doi:10.1108/09615530610669157
[18]Patnaik, S.; Voller, V. R.; Parker, G.; Frascati, A.: Morphology of a melt front under a condition of spatial varying latent heat, Int. commun. Heat mass transfer 36, 535-538 (2009)
[19]Lorenzo-Trueba, J.; Voller, V. R.: Analytical and numerical solution of a generalized Stefan problem exhibiting two moving boundaries with application to ocean delta formation, J. math. Anal. appl. 366 (2010) · Zbl 1183.86002 · doi:10.1016/j.jmaa.2010.01.008
[20]Carslaw, H. S.; Jaeger, J. C.: Conduction of heat in solids, (1959)
[21]Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics reports 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[22]Zhang, Y.; Benson, D. A.; Reeves, D. M.: Time and space non-localities underlying fractional-derivative models: distinction and literature review of field applications, Adv. water resources 32, 561-581 (2009)
[23]Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M.: The fractional-order governing equation of Lévy motion, Water resources res. 36, 1413-1423 (2000)
[24]Schumer, R.; Meerschaert, M. M.; Baeumer, B.: Fractional advection – dispersion equations for modeling transport at the Earth surface, J. geophys. Res. 114 (2009)
[25]Meerschaert, M. M.; Benson, D. A.; Scheffler, H. -P.; Baeumer, B.: Stochastic solution of space – time-fractional diffusion equations, Phys. rev. E 65 (2002)
[26]Chaves, A. S.: A fractional diffusion equation to describe Lévy flights, Phys. lett. A 239, 13-16 (1998) · Zbl 1026.82524 · doi:10.1016/S0375-9601(97)00947-X
[27]Benson, D. A.; Schumer, R.; Meerschaert, M. M.; Wheatcraft, S.: Fractional dispersion, Lévy motion, and the made tracer tests, Transp. porous media 42, 211-240 (2001)
[28]Aoki, Y.; Sen, M.; Paolucci, S.: Approximation of transient temperatures in complex geometries using fractional derivatives, Heat transfer 44, 771-777 (2008)
[29]Jumyi, Liu; Mingyu, Xu: Some exact solutions to Stefan problems with fractional differential equations, J. math. Anal. appl. 351, 536-542 (2009) · Zbl 1163.35043 · doi:10.1016/j.jmaa.2008.10.042
[30]Voller, V. R.; Paola, C.: Can anomalous diffusion describe depositional fluvial profiles?, J. geophys. Res. 115 (2010)
[31]Li, Xicheng; Xu, Mingyu; Wang, Shaowel: Analytical solutions to the moving boundary problems with space – time-fractional derivatives in drug release devices, J. phys. A: math theor. 40, 12132-12141 (2007) · Zbl 1134.35104 · doi:10.1088/1751-8113/40/40/008
[32]Dantzig, J.; Rappaz, M.: Solidification: methods, microstructure and modeling, (2009)
[33]Podlubny, I.: Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, some methods of their solution and some of their applications, (1998)