zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic chance constrained mixed-integer nonlinear programming models and the solution approaches for refinery short-term crude oil scheduling problem. (English) Zbl 1201.90096
Summary: Stochastic chance constrained mixed-integer nonlinear programming (SCC-MINLP) models are developed in this paper to solve the refinery short-term crude oil scheduling problem which concerns crude oil unloading, mixing, transferring and multilevel inventory control under demands uncertainty of distillation units. The objective of these models is the minimum expected value of total operation cost. It is the first time that the uncertain demands of Crude oil Distillation Units (CDUs) in these problems are set as random variables which have discrete and continuous joint probability distributions. This situation is close to the real world industry use. To reduce the computation complexity, these SCC-MINLP models are transformed into their equivalent stochastic chance constrained mixed-integer linear programming models (SCC-MILP). Stochastic simulation and stochastic sampling technologies are introduced in detail to solve these complex SCC-MILP models. Finally, case studies are effectively solved with the proposed approaches.
90B36Scheduling theory, stochastic
90C11Mixed integer programming
90C15Stochastic programming
90B90Case-oriented studies in OR
90C90Applications of mathematical programming
[1]Pinto, J. M.; Joly, M.; Moro, L. F. L.: Planning and scheduling models for refinery operations, Comput. chem. Eng. 24, No. 9 – 10, 2259-2276 (2000)
[2]Bonner and Moore Management Science. RPMS (Refinery and Petrochemical Modelling System). A system description, Houston, TX, 1979.
[3]Bechtel Corporation. PIMS (Process Industry Modelling System). Users’ Manual, Version 6.0, Houston, TX, 1993.
[4]Moro, L. F. L.; Pinto, J. M.: Mixed-integer programming approach for short-term crude oil scheduling, Ind. eng. Chem. res. 43, No. 1, 85-94 (2004)
[5]Jia, Z.; Ierapetritou, M.; Kelly, J. D.: Refinery short-term scheduling using continuous time formulation: crude-oil operations, Ind. eng. Chem. res. 42, No. 13, 3085-3097 (2003)
[6]Shah, N.: Mathematical programming technique for crude oil scheduling, Comput. chem. Eng. 20, No. Suppl. 2, S1227-S1232 (1996)
[7]Lee, H.; Pinto, J. M.; Grossmann, I. E.; Park, S.: Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management, Ind. eng. Chem. res. 35, No. 5, 1630-1641 (1996)
[8]Reddy, P. Chandra Prakash; Karimi, I. A.; Srinivasan, R.: A new continuous-time formulation for scheduling crude oil operations, Chem. eng. Sci. 59, No. 6, 1325-1341 (2004)
[9]Chryssolouris, G.; Papakostas, N.; Mourtzis, D.: Refinery short-term scheduling with tank farm, inventory and distillation management: an integrated simulation-based approach, Eur. J. Oper. res. 166, No. 3, 812-827 (2005) · Zbl 1112.90331 · doi:10.1016/j.ejor.2004.03.046
[10]Jr., R. Refowski; Pinto, J. M.: A novel continuous time representation for the scheduling of pipeline systems with pumping yield rate constraints, Comput. chem. Eng. 32, 1042-1066 (2008)
[11]Cao, C.; Gu, X.; Xin, Z.: Chance constrained programming models for refinery short-term crude oil scheduling problem, Appl. math. Model. 33, No. 3, 1696-1707 (2009) · Zbl 1168.90406 · doi:10.1016/j.apm.2008.03.022
[12]Liu, M. L.; Sahinidis, N. V.: Optimization in process planning under uncertainty, Ind. eng. Chem. res. 35, No. 11, 4154-4165 (1996)
[13]Charnes, A.; Cooper, W. W.: Chance-constrained programming, Manage. sci. 6, 73-79 (1959) · Zbl 0995.90600 · doi:10.1287/mnsc.6.1.73
[14]Liu, B.; Zhao, R.; Wang, G.: Uncertain programming with applications, (2003)
[15]Zhou, J.; Liu, B.: New stochastic models for capacitated location-allocation problem, Comput. ind. Eng. 45, 111-125 (2003)
[16]Gendreau, M.; Laporte, G.; Seguin, R.: Stochastic vehicle routing, Euro. J. Oper. res. 88, 3-12 (1999) · Zbl 0913.90094 · doi:10.1016/0377-2217(95)00050-X
[17]Elmaghraby, S.: Allocation under uncertainty when the demand has continuous D.F, Manage. sci. 6, 270-294 (1960) · Zbl 0995.90580 · doi:10.1287/mnsc.6.3.270
[18]Vicente, R. R.: Water networks sevurity: A two-stage mixed-integer stochastic program for sensor placement under uncertainty, Comput. chem. Eng. 31, 565-573 (2007)
[19]Daruppiah, R.; Grossmann, I. E.: Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty, Comput. chem. Eng. 32, 145-160 (2008)
[20]Choi, S. H.; Ko, J. W.; Manousiouthakis, V.: A stochastic approach to global optimization of chemical processes, Comput. chem. Eng. 23, 1351-1356 (1999)
[21]Pistilopoulos, E. N.; Ierapetritou, M. G.: Novel approach for optimal process design under uncertainty, Comput. chem. Eng. 19, 1089-1110 (1994)
[22]Shastri, Y.; Diwekar, U.: An efficient algorithm for large scale stochastic nonlinear programming problems, Comput. chem. Eng. 30, 864-877 (2006)
[23]Jochen, T.: Comput. chem. Eng., Comput. chem. Eng. 31, 630-647 (2007)
[24]Sand, G.; Engell, S.: Modeling and soving real-time scheduling problems by stochastic integer programming, Comput. chem. Eng. 28, 1087-1103 (2004)
[25]Honkomp, S. J.; Mockus, L.; Reklaitis, G. V.: A framework for schedule evaluation with processing uncertainty, Comput. chem. Eng. 23, 595-609 (1999)
[26]Seza, O.; Kuban, A.; Oner, H.: Scheduling of batch process operational uncertainties, Comput. chem. Eng. 20, S1191-S1196 (1996)
[27]Schmidt, C. W.; Grossmann, I. E.: A mixed integer programming model for stochastic scheduling in new product development, Comput. chem. Eng. 20, S1239-S1244 (1996)
[28]Ierapetritou, M. G.; Pistikopoulos, E. N.: Design of multiproduct batch plants with uncertain demands, Comput. chem. Eng. 19, S627-S632 (1995)
[29]Clay, R. L.; Grossmann, I. E.: A disaggregation algorithm for the optimization of stochastic planning models, Comput. chem. Eng. 21, 751-774 (1997)
[30]Lin, X.; Janak, S. L.; Floudas, C. A.: A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty, Comput. chem. Eng. 28, 1069-1085 (2004)
[31]Dantzig, G. B.: Linear programming under uncertainty, Manage. sci. 50, 1764-1769 (2004)
[32]Sahinidis, N. V.: Optimization under uncertainty: state-of-the-art and opportunities, Comput. chem. Eng. 28, No. 6-7, 971-983 (2004)
[33]Ahmed, S.; King, A.; Parija, G. A.: A multi-stage stochastic integer programming approach for capacity expansion under uncertainty, J. global optim. 26, 3-24 (2003) · Zbl 1116.90382 · doi:10.1023/A:1023062915106
[34]Quesada, I.; Grossmann, I. E.: Global optimization of bilinear process networks with multicomponent flows, Comput. chem. Eng. 19, 1219-1242 (1995)
[35]Gao, H.: Statistical computing, (2005)
[36]Johnson, R. A.; Wichern, D. W.: Applied multivariate statistical analysis, (2008)
[37]Xie, J.; Xue, Y.: Optimization modeling and LINDO/LINGO software, (2005)