zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Uniqueness and periodicity of meromorphic functions concerning the difference operator. (English) Zbl 1202.30045
Summary: We investigate the uniqueness problems of difference polynomials of meromorphic functions that share a value or a fixed point. We also obtain several results concerning the shifts of meromorphic functions and the sufficient conditions for periodicity which improve some recent results of J. Heittokangas et al. [J. Math. Anal. Appl. 355, No. 1, 352–363 (2009; Zbl 1180.30039)] and K. Liu [J. Math. Anal. Appl. 359, No. 1, 384–393 (2009; Zbl 1177.30035)].

MSC:
30D30General theory of meromorphic functions
References:
[1]Laine, I.: Nevanlinna theory and complex differential equations, (1993)
[2]Yang, C. C.; Yi, H. X.: Uniqueness theory of meromorphic functions, (2003)
[3]Hayman, W. K.: Picard values of meromorphic functions and their derivatives, Ann. of math. 70, 9-42 (1959) · Zbl 0088.28505 · doi:10.2307/1969890
[4]Mues, E.: Über ein problem von Hayman, Math. Z. 164, 239-259 (1979) · Zbl 0402.30034 · doi:10.1007/BF01182271
[5]Bergweiler, W.; Eremenko, A.: On the singularities of the inverse to a meromorphic function of finite order, Rev. mat. Iberoam. 11, 355-373 (1995) · Zbl 0830.30016
[6]Laine, I.; Yang, C. C.: Value distribution of difference polynomials, Proc. Japan acad. Ser. A 83, 148-151 (2007) · Zbl 1153.30030 · doi:10.3792/pjaa.83.148 · doi:euclid:pja/1201012520
[7]Liu, K.; Yang, L. Z.: Value distribution of the difference operator, Arch. math. 92, 270-278 (2009) · Zbl 1173.30018 · doi:10.1007/s00013-009-2895-x
[8]Fang, M. L.; Hua, X. H.: Entire functions that share one value, Nanjing daxue xuebao shuxue bannian kan 13, No. 1, 44-48 (1996) · Zbl 0899.30022
[9]Yang, C. C.; Hua, X. H.: Uniqueness and value-sharing of meromorphic functions, Ann. acad. Sci. fenn. Math. 22, No. 2, 395-406 (1997) · Zbl 0890.30019 · doi:emis:journals/AASF/Vol22/vol22.html
[10]Heittokangas, J.; Korhonen, R.; Laine, I.; Rieppo, J.; Zhang, J. L.: Value sharing results for shifts of meromorphic function, and sufficient conditions for periodicity, J. math. Anal. appl. 355, 352-363 (2009) · Zbl 1180.30039 · doi:10.1016/j.jmaa.2009.01.053
[11]Liu, K.: Meromorphic functions sharing a set with applications to difference equations, J. math. Anal. appl. 359, 384-393 (2009) · Zbl 1177.30035 · doi:10.1016/j.jmaa.2009.05.061
[12]Brück, R.: On entire functions which share one value CM with their first derivative, Results math. 30, 21-24 (1996) · Zbl 0861.30032
[13]Halburd, R. G.; Korhonen, R. J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. math. Anal. appl. 314, 477-487 (2006) · Zbl 1085.30026 · doi:10.1016/j.jmaa.2005.04.010
[14]Chiang, Y. M.; Feng, S. J.: On the Nevanlinna characteristic f(z+η) and difference equations in the complex plane, Ramanujan J. 16, 105-129 (2008) · Zbl 1152.30024 · doi:10.1007/s11139-007-9101-1
[15]Halburd, R. G.; Korhonen, R. J.: Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. lond. Math. soc. 94, 443-474 (2007) · Zbl 1119.39014 · doi:10.1112/plms/pdl012
[16]Halburd, R. G.; Korhonen, R. J.: Nevanlinna theory for the difference operator, Ann. acad. Sci. fenn. Math. 31, 463-478 (2006) · Zbl 1108.30022
[17]Yang, L. Z.; Zhang, J. L.: Non-existence of meromorphic solution of a Fermat type functional equation, Aequationes math. 76, 140-150 (2008) · Zbl 1161.30022 · doi:10.1007/s00010-007-2913-7
[18]Yi, H. X.: Meromorphic functions that share one or two values II, Kodai math. J. 22, 264-272 (1999) · Zbl 0939.30020 · doi:10.2996/kmj/1138044046