zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The asymptotic behavior of a nonautonomous eco-epidemic model with disease in the prey. (English) Zbl 1202.34098
Summary: A nonautonomous eco-epidemic model with disease in the prey is formulated and studied. Some sufficient and necessary conditions on the permanence and extinction of the infective prey are established by introducing the new research method. Some sufficient conditions on the global attractivity of the model are presented by constructing a Lyapunov function. Finally, an example is given to show that the periodic model is global attractivity if the infective prey is permanent.
MSC:
34D20Stability of ODE
92D30Epidemiology
References:
[1]Alexander, M. E.; Moghadas, S. M.: Periodicity in an epidemic model with a generalized non-linear incidence, Math. biosci. 189, 75-96 (2004) · Zbl 1073.92040 · doi:10.1016/j.mbs.2004.01.003
[2]Chattopadhyay, J.; Arino, O.: A predator – prey model with disease in the prey, Nonlinear anal. 36, 747-766 (1999) · Zbl 0922.34036 · doi:10.1016/S0362-546X(98)00126-6
[3]Hethcote, H. W.; Wang, W.; Han, L.; Ma, Z.: A predator – prey model with infected prey, Theor. popul. Biol. 66, 259-268 (2004)
[4]Xiao, Y.; Chen, L.: Analysis of a three species eco-epidemiological model, J. math. Anal. appl. 258, 733-754 (2001) · Zbl 0967.92017 · doi:10.1006/jmaa.2001.7514
[5]Xiao, Y.; Chen, L.: A ratio-dependent predator – prey model with disease in the prey, Appl. math. Comput. 131, 397-414 (2002) · Zbl 1024.92017 · doi:10.1016/S0096-3003(01)00156-4
[6]Xiao, Y.; Chen, L.: Modeling and analysis of a predator – prey model with disease in the prey, Math. biosci. 171, 59-82 (2001) · Zbl 0978.92031 · doi:10.1016/S0025-5564(01)00049-9
[7]Dowell, S. F.: Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. infect. Dis. 7, 369-374 (2001)
[8]Earn, D. J. D.; Dushoff, J.; Levin, S. A.: Ecology and evolution of the flu, Trends ecol. Evol. 17, 334-340 (2002)
[9]London, W.; Yorke, J. A.: Recurrent outbreaks of measles, chickenpox and mumps: I. Seasonal variation in contact rates, Am. J. Epidemiol. 98, 453-468 (1973)
[10]J.C. Holmes, W.M. Bethel, Modification of intermediate host behavior by parasites, in: E.U. Canning, C.A. Wright, (Eds.), Behavioural Aspects of Parasite Transmission, Zool. F. Linnean Soc., vol. 51, 1972, pp. 123 – 149.
[11]Peterson, R. O.; Page, R. E.: Wolf density as a predictor of predator rate, Swedish wildlife res. Suppl. 1, 771-773 (1987)
[12]Peterson, R. O.; Page, R. E.: The rise and fall of isle royale wolves, 1975 – 1986, J. mammal. 69, 89-99 (1988)
[13]Fan, M.; Michael, Y.; Wang, K.: Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. biosci. 170, 199-208 (2001) · Zbl 1005.92030 · doi:10.1016/S0025-5564(00)00067-5
[14]Venturino, E.: The influence of disease on Lotka – Volterra systems, Rocky mount. J. math. 24, 389-402 (1994) · Zbl 0799.92017 · doi:10.1216/rmjm/1181072471
[15]Teng, Z.; Li, Z.: Permanence and asymptotic behavior of the n-species nonautonomous Lotka – Volterra competitive systems, Comput. math. Appl. 39, 107-116 (2000) · Zbl 0959.34039 · doi:10.1016/S0898-1221(00)00069-9
[16]Zhang, T.; Teng, Z.: On a nonautonomous SEIRS model in epidemiology, Bull. math. Biol. 69, 2537-2559 (2007)
[17]Feng, X.; Teng, Z.; Zhang, L.: The permanence for nonautonomous n-species Lotka – Volterra competitive systems with feedback controls, Rocky mount. J. math. 38, 1355-1376 (2008) · Zbl 1167.34018 · doi:10.1216/RMJ-2008-38-5-1355