zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential convergence for high-order recurrent neural networks with a class of general activation functions. (English) Zbl 1202.34132
Summary: We consider high-order recurrent neural networks with a class of general activation functions. By using some mathematical analysis techniques, we establish new results to ensure that all solutions of the networks converge exponentially to zero point.
MSC:
34K20Stability theory of functional-differential equations
92C20Neural biology
References:
[1]Xu, B.; Liu, X.; Liao, X.: Global asymptotic stability of high-order Hopfield type neural networks with time delays, Comput. math. Appl. 45, 1729-1737 (2003) · Zbl 1045.37056 · doi:10.1016/S0898-1221(03)00151-2
[2]Dembo, A.; Farotimi, O.; Kailath, T.: High-order absolutely stable neural network, IEEE trans. Circuits syst. 8, No. 1, 57-65 (1991) · Zbl 0712.92002 · doi:10.1109/31.101303
[3]Wang, P. G.; Lian, H. R.: Global exponential stability and periodic solutions of the high-order Hopfield type neural networks with time-varying coefficient, Z. anal. Anwend. 24, No. 2, 419-429 (2005) · Zbl 1106.34050 · doi:10.4171/ZAA/1249
[4]Cao, J.; Liang, J.; Lam, James: Exponential stability of high-order bidirectional associative memory neural networks with time delays, Physica D: Nonlinear phenom. 199, No. 3 – 4, 425-436 (2004) · Zbl 1071.93048 · doi:10.1016/j.physd.2004.09.012
[5]Cao, J.; Ho, Daniel W. C.; Huang, X.: LMI-based criteria for global robust stability of bidirectional associative memory networks with time delay, Nonlinear anal. 66, No. 7, 1558-1572 (2007) · Zbl 1120.34055 · doi:10.1016/j.na.2006.02.009
[6]Ho, Daniel W. C.; Liang, J.; Lam, James: Global exponential stability of impulsive high-order BAM neural networks with time-varying delays, Neural networks 19, No. 10, 1581-1590 (2006) · Zbl 1178.68417 · doi:10.1016/j.neunet.2006.02.006
[7]Ren, F.; Cao, J.: LMI-based criteria for stability of high-order neural networks with time-varying delay, Nonlinear anal.: real world appl. 7, No. 5, 967-979 (2006) · Zbl 1121.34078 · doi:10.1016/j.nonrwa.2005.09.001
[8]Lou, Xu-Yang; Cui, Bao-Tong: Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays, J. math. Anal. appl. 330, No. 1, 144-158 (2007) · Zbl 1111.68104 · doi:10.1016/j.jmaa.2006.07.058
[9]Liu, B.: Exponential convergence for a class of delayed cellular neural networks with time-varying coefficients, Phys. lett. A 372, No. 4, 424-428 (2008) · Zbl 1217.34069 · doi:10.1016/j.physleta.2007.07.061
[10]Li, Y.; Huang, L.: Exponential convergence behavior of solutions to shunting inhibitory cellular neural networks with delays and time-varying coefficients, Math. comput. Modell. 48, No. 3 – 4, 499-504 (2008) · Zbl 1145.34368 · doi:10.1016/j.mcm.2007.10.007
[11]Qiu, Jianlong: Dynamics of high-order Hopfield neural networks with time delays, Neurocomputing 73, 820-826 (2010)
[12]Huang, Zaitang; Yang, Qi-Gui: Exponential stability of impulsive high-order cellular neural networks with time-varying delays, Nonlinear anal.: real world appl. 11, 592-600 (2010) · Zbl 1180.93050 · doi:10.1016/j.nonrwa.2008.11.007
[13]Cao, J.; Wang, J.: Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays, Neural networks 17, No. 3, 379-390 (2004) · Zbl 1074.68049 · doi:10.1016/j.neunet.2003.08.007
[14]Liang, X.; Wang, J.: Absolute exponential stability of recurrent neural networks with general class of activation functions, IEEE trans. Circuits syst. I 47, 1258-1263 (2000) · Zbl 1079.68592 · doi:10.1109/81.873882
[15]Liu, Bingwen: New convergence behavior of solutions to Cohen – Grossberg neural networks with delays and time-varying coefficients, Phys. lett. A 372, 117-123 (2008) · Zbl 1217.34068 · doi:10.1016/j.physleta.2007.09.066
[16]Yi, Xuejun; Shao, Jianying; Yu, Yuehua; Xiao, Bing: New convergence behavior of high-order Hopfield neural networks with time-varying coefficients, J. comput. Appl. math. 219, 216-222 (2008) · Zbl 1161.34050 · doi:10.1016/j.cam.2007.07.011