zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Invariant manifolds for competitive discrete systems in the plane. (English) Zbl 1202.37027
Summary: Let T be a competitive map on a rectangular region 2 , and assume T is C 1 in a neighborhood of a fixed point x ¯. The main results of this paper give conditions on T that guarantee the existence of an invariant curve emanating from x ¯ when both eigenvalues of the Jacobian of T at x ¯ are nonzero and at least one of them has absolute value less than one, and establish that 𝒞 is an increasing curve that separates into invariant regions. The results apply to many hyperbolic and nonhyperbolic cases, and can be effectively used to determine basins of attraction of fixed points of competitive maps, or equivalently, of equilibria of competitive systems of difference equations. These results, known in hyperbolic case, have been used to determine the basins of attraction of hyperbolic equilibrium points and to establish certain global bifurcation results when switching from competitive coexistence to competitive exclusion. The emphasis in applications in this paper is on planar systems of difference equations with nonhyperbolic equilibria, where we establish a precise description of the basins of attraction of finite or infinite number of equilibrium points.
37D10Invariant manifold theory
37E30Homeomorphisms and diffeomorphisms of planes and surfaces
37C70Attractors and repellers, topological structure