zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solutions to stochastic fractional oscillation equations. (English) Zbl 1202.60099
Summary: We formulate a fractional stochastic oscillation equation as a generalization of Bagley’s fractional differential equation. We do this in analogy to the case of Basset’s equation, which gives rise to fractional stochastic relaxation equations. We analyze solutions under some conditions of spatial regularity of the operators considered.
MSC:
60H15Stochastic partial differential equations
References:
[1]R.L. Bagley, On the fractional order initial value problem and its engineering applications, in: K. Nishimoto (Ed.), Fractional Calculus and Its Applications, College of Engineering, Nihon University, Tokyo 1990, pp. 12–20. Proc. Int. Conf. held at Nihon Univ., Tokyo, 1989. · Zbl 0751.73023
[2]E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Thesis, Eindhoven University of Technology, 2001. · Zbl 0989.34002
[3]Beyer, H.; Kempfle, S.: Definition of physically consistent damping laws with fractional derivatives, Zamm 75, 623-635 (1995) · Zbl 0865.70014 · doi:10.1002/zamm.19950750820
[4]Caputo, M.: Elasticitá e dissipazione, (1969)
[5]Erdélyi, A.; Magnus, M.; Oberhettinger, F.; Tricomi, F. G.: Higher transcendental functions, (1955) · Zbl 0064.06302
[6]Gorenflo, R.; Mainardi, F.: Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics, 223-276 (1997)
[7]Karczewska, A.: Properties of convolutions arising in stochastic Volterra equations, Int. J. Contemp. math. Sci. 2, 1037-1052 (2007) · Zbl 1142.60372
[8]Karczewska, A.; Lizama, C.: Solutions to stochastic fractional relaxation equations, Phys. scr. T 136, 014030 (2009)
[9]M. Kostić, Generalized Semigroups and Cosine Functions (in press). · Zbl 1217.47001
[10]Lizama, C.: Regularized solutions for abstract Volterra equations, J. math. Anal. appl. 243, No. 2, 278-392 (2000) · Zbl 0952.45005 · doi:10.1006/jmaa.1999.6668
[11]Lizama, C.: On approximation and representation of k-regularized resolvent families, Integral equations operator theory 41, No. 2, 223-229 (2001) · Zbl 1011.45006 · doi:10.1007/BF01295306
[12]Mainardi, F.: Fractional calculus, some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics (1997)
[13]Mainardi, F.; Pironi, P.: The fractional Langevin equation: Brownian motion revisited, Extracta mathematicae 11, No. 1, 140-154 (1996)
[14]Mainardi, F.; Mura, A.; Tampieri, F.: Brownian motion and anomalous diffusion revisited via a fractional Langevin equation, Modern problems of statistical physics 8, 3-23 (2009)
[15]Pazy, A.: Semigroups of linear operators and applications to partial differential equations, (1983)
[16]Prüss, J.: Evolutionary integral equations and applications, (1993)