zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. (English) Zbl 1202.76017
Summary: The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.
MSC:
76A10Viscoelastic fluids
References:
[1]Han S.F. (2000). Constitutive Equation and Computational Analytical Theory of Non-Newtonian Fluids. Science Press, Beijing
[2]Rajagopal K.R. and Bhatnagar R.K. (1995). Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mech. 113: 233–239 · Zbl 0858.76010 · doi:10.1007/BF01212645
[3]Hayat T., Siddiqui A.M. and Asghar A. (2001). Some simple flows of an Oldroyd-B fluid. Int. J. Eng. Sci. 39: 135–147 · doi:10.1016/S0020-7225(00)00026-4
[4]Fetecau C. and Fetecau C. (2003). The first problem of Stokes for an Oldroyd-B fluid. Int. J. Non-Linear Mech. 38: 1539–1544 · Zbl 05138240 · doi:10.1016/S0020-7462(02)00117-8
[5]Hayat T., Khan M. and Ayub M. (2004). Exact solutions of flow problems of an Oldroyd-B fluid. Appl. Math. Comput. 151: 105–119 · Zbl 1039.76001 · doi:10.1016/S0096-3003(03)00326-6
[6]Tan W.C. and Masuoka T. (2005). Stokes’ first problem for an Oldroyd-B fluid in a porous half space. Phys. Fluids 17: 023101 · Zbl 1187.76517 · doi:10.1063/1.1850409
[7]Podlubny I. (1999). Fractional Differential Equations. Academic, San Diego
[8]Bagley R.L. and Torvik P.J. (1986). On the fractional calculus model of viscoelastic behavior. J. Rheol. 30: 133–155 · Zbl 0613.73034 · doi:10.1122/1.549887
[9]Friedrich C. (1991). Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol. Acta 30: 151–158 · doi:10.1007/BF01134604
[10]Song D.Y. and Jiang T.Q. (1998). Study on the constitutive equation with fractional derivative for the viscoelastic fluids–modified Jeffreys model and its application. Rheol. Acta 37: 512–517 · doi:10.1007/s003970050138
[11]Hilfer R. (2000). Applications of Fractional Calculus in Physics. World Scientific Press, Singapore
[12]Xu M.Y. and Tan W.C. (2002). Rrepresentation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions. Sci. China Ser. A 32: 673–681
[13]Xu M.Y. and Tan W.C. (2006). Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics. Sci. China Ser. G 49: 257–272
[14]Huang J.Q., He G.Y. and Liu C.Q. (1997). Analysis of general second-order fluid flow in double cylinder rheometer. Sci. China Ser. A 40: 183–190 · Zbl 0891.76006 · doi:10.1007/BF02874437
[15]Xu M.Y. and Tan W.C. (2001). Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Sci. China Ser. A 31: 626–638
[16]Tan W.C., Xian F. and Wei L. (2002). An exact solution of unsteady Couette flow of generalized second grade fluid. Chin. Sci. Bull. 47: 1783–1785 · doi:10.1360/02tb9389
[17]Tan W.C. and Xu M.Y. (2002). The impulsive motion of flat plate in a generalized second grade fluid. Mech. Res. Comm. 29: 3–9 · Zbl 1151.76368 · doi:10.1016/S0093-6413(02)00223-9
[18]Tan W.C. and Xu M.Y. (2004). Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta Mech. Sin. 20: 471–476 · doi:10.1007/BF02484269
[19]El-Shahed M. (2004). On the impulsive motion of flat plate in a generalized second grade fluid. Z. Naturforsch 59a: 829–837
[20]Shen F., Tan W.C., Zhao Y.H. and Masuoka T. (2004). Decay of vortex and diffusion of temperature in a generalized second grade fluid. Appl. Math. Mech. 25: 1151–1159 · Zbl 1088.76004 · doi:10.1007/BF02439867
[21]Khan M., Nadeem S., Hayat T. and Siddiqui A.M. (2005). Unsteady motions of a generalized second-grade fluid. Math. Comput. Model. 41: 629–637 · Zbl 1080.76007 · doi:10.1016/j.mcm.2005.01.029
[22]Shen F., Tan W.C., Zhao Y.H. and Masuoka T. (2006). The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7: 1072–1080 · Zbl 1113.76016 · doi:10.1016/j.nonrwa.2005.09.007
[23]Tan W.C. and Xu M.Y. (2002). Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sin. 18: 342–349 · doi:10.1007/BF02487786
[24]Tan W.C., Pan W.X. and Xu M.Y. (2003). A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Non-Linear Mech. 38: 645–650 · Zbl 05138171 · doi:10.1016/S0020-7462(01)00121-4
[25]Hayat T., Nadeem S. and Asghar S. (2004). Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model. Appl. Math. Comput. 151: 153–161 · Zbl 1161.76436 · doi:10.1016/S0096-3003(03)00329-1
[26]Yin Y. and Zhu K.Q. (2006). Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model. Appl. Math. Comput. 173: 231–242 · Zbl 1105.76009 · doi:10.1016/j.amc.2005.04.001
[27]Wang S.W. and Xu M.Y. (2006). Exact solution on unsteady Couette flow of generalized Maxwell fluid with fractional derivative. Acta Mech. 187: 103–112 · Zbl 1103.76011 · doi:10.1007/s00707-006-0332-9
[28]Qi H.T. and Jin H. (2006). Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell Model between coaxial cylinders. Acta Mech. Sin. 22: 301–305 · Zbl 1202.76016 · doi:10.1007/s10409-006-0013-x
[29]Qi H.T. and Xu M.Y. (2007). Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel. Mech. Res. Commun. 34: 210–212 · Zbl 1192.76008 · doi:10.1016/j.mechrescom.2006.09.003
[30]Tong D.K. and Liu Y.S. (2005). Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Int. J. Eng. Sci. 43: 281–289 · Zbl 1211.76014 · doi:10.1016/j.ijengsci.2004.09.007
[31]Tong D.K., Wang R.H. and Yang H.S. (2005). Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Sci. China Ser. G 48: 485–495
[32]Erdogan M.E. (2000). A note on an unsteady flow of a viscous fluid due to an oscillating plane wall. Int. J. Non-Linear Mech. 35: 1–6 · Zbl 1006.76028 · doi:10.1016/S0020-7462(99)00019-0
[33]Zeng Y. and Weinbaum S. (1995). Stokes problems for moving half-planes. J. Fluid Mech. 287: 59–74 · Zbl 0843.76015 · doi:10.1017/S0022112095000851
[34]Volfson D. and Vinals J. (2001). Flow induced by a randomly vibrating boundary. J. Fluid Mech. 432: 387–408
[35]Jordan P.M., Puri A. and Boros G. (2004). On a new exact solution to Stokes’ first problem for Maxwell fluids. Int. J. Non-Linear Mech. 39: 1371–1377 · Zbl 05138535 · doi:10.1016/j.ijnonlinmec.2003.12.003
[36]Jordan P.M. and Puri A. (2005). Revisiting Stokes’ first problem for Maxwell fluids. Q. J. Mech. Appl. Math. 58: 213–227 · Zbl 1072.76006 · doi:10.1093/qjmamj/hbi008
[37]Tan W.C. and Masuoka T. (2005). Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary. Int. J. Non-Linear Mech. 40: 515–522 · Zbl 05138608 · doi:10.1016/j.ijnonlinmec.2004.07.016
[38]Yih C.S. (1969). Fluid Mechanics: A Concise Introduction to the Theory. McGraw-Hill, New York