zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcation and chaotic behavior of a discrete-time predator-prey system. (English) Zbl 1202.93038
Summary: The dynamics of a discrete-time predator-prey system is investigated in the closed first quadrant + 2 . It is shown that the system undergoes flip bifurcation and Neimark-Sacker bifurcation in the interior of + 2 by using a center manifold theorem and bifurcation theory. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as orbits of period 7, 14, 21, 63, 70, cascades of period-doubling bifurcation in orbits of period 2, 4, 8, quasi-periodic orbits and chaotic sets. These results show far richer dynamics of the discrete model compared with the continuous model. Specifically, we have stabilized the chaotic orbits at an unstable fixed point using the feedback control method.
MSC:
93B52Feedback control
34H20Bifurcation control (ODE)
49N75Pursuit and evasion games in calculus of variations
References:
[1]Lotka, A. J.: Elements of mathematical biology, (1956) · Zbl 0074.14404
[2]Volterra, V.: Opere matematiche, memorie e note, Opere matematiche, memorie e note (1962) · Zbl 0099.00102
[3]Holling, C. S.: The functional response of predator to prey density and its role in mimicry and population regulation, Mem. entomol. Soc. can. 45, 1-60 (1965)
[4]Freedman, H. I.; Mathsen, R. M.: Persistence in predator–prey systems with ratio-dependent predator influence, Bull. math. Biol. 55, 817-827 (1993) · Zbl 0771.92017
[5]Hastings, A.: Multiple limit cycles in predator–prey models, J. math. Biol. 11, 51-63 (1981) · Zbl 0471.92022 · doi:10.1007/BF00275824
[6]Kooij, R. E.; Zegeling, A.: Qualitative properties of two-dimensional predator–prey systems, Nonlinear anal. 29, 693-715 (1997) · Zbl 0883.34040 · doi:10.1016/S0362-546X(96)00068-5
[7]Lindström, T.: Qualitative analysis of a predator–prey systems with limit cycles, J. math. Biol. 31, 541-561 (1993) · Zbl 0782.92013 · doi:10.1007/BF00161198
[8]Rosenzweig, M. L.; Macarthur, R. H.: Graphical representation and stability conditions of predator–prey interactions, Am. nat. 97, 209-223 (1963)
[9]Jiao, J. J.; Chen, L. S.; Nieto, J. J.; Angela, T.: Permanence and global attractivity of stage-structured predator–prey model with continuous harvesting on predator and impulsive stocking on prey, Appl. math. Mech. (English ed.) 29, 653-663 (2008) · Zbl 1231.34021 · doi:10.1007/s10483-008-0509-x
[10]Jiao, J. J.; Meng, X. Z.; Chen, L. S.: Global attractivity and permanence of a stage-structured pest management SI model with time delay and diseased pest impulsive transmission, Chaos solitons fractals 38, 658-668 (2008) · Zbl 1146.34322 · doi:10.1016/j.chaos.2007.01.003
[11]Wang, W. B.; Shen, J. H.; Nieto, J. J.: Permanence and periodic solution of predator–prey system with Holling type functional response and impulses, Discrete dyn. Nat. soc. (2007) · Zbl 1146.37370 · doi:10.1155/2007/81756
[12]Yan, X. P.; Zhang, C. H.: Hopf bifurcation in a delayed Lotka–Volterra predator–prey system, Nonlinear anal. RWA 9, 114-127 (2008) · Zbl 1149.34048 · doi:10.1016/j.nonrwa.2006.09.007
[13]Zeng, G. Z.; Wang, F. Y.; Nieto, J. J.: Complexity of a delayed predator–prey model with impulsive harvest and Holling type II functional response, Adv. complex syst. 11, 77-97 (2008) · Zbl 1168.34052 · doi:10.1142/S0219525908001519
[14]Agiza, H. N.; Elabbasy, E. M.; El-Metwally, H.; Elsadany, A. A.: Chaotic dynamics of a discrete prey–predator model with Holling type II, Nonlinear anal. RWA 10, 116-129 (2009) · Zbl 1154.37335 · doi:10.1016/j.nonrwa.2007.08.029
[15]Beddington, J. R.; Free, C. A.; Lawton, J. H.: Dynamic complexity in predator–prey models framed in difference equations, Nature 255, 58-60 (1975)
[16]Blackmore, D.; Chen, J.; Perez, J.; Savescu, M.: Dynamical properties of discrete Lotka–Volterra equations, Chaos solitons fractals 12, 2553-2568 (2001) · Zbl 0999.39017 · doi:10.1016/S0960-0779(00)00214-9
[17]Danca, M.; Codreanu, S.; Bako, B.: Detailed analysis of a nonlinear prey–predator model, J. biol. Phys. 23, 11-20 (1997)
[18]Hadeler, K. P.; Gerstmann, I.: The discrete rosenzweig model, Math. biosci. 98, 49-72 (1990) · Zbl 0694.92014 · doi:10.1016/0025-5564(90)90011-M
[19]Jing, Z. J.; Yang, J.: Bifurcation and chaos in discrete-time predator–prey system, Chaos solitons fractals 27, 259-277 (2006) · Zbl 1085.92045 · doi:10.1016/j.chaos.2005.03.040
[20]Liu, X.; Xiao, D.: Complex dynamic behaviors of a discrete-time predator–prey system, Chaos solitons fractals 32, 80-94 (2007) · Zbl 1130.92056 · doi:10.1016/j.chaos.2005.10.081
[21]Lopez-Ruiz, R.; Fournier-Prunaret, R.: Indirect allee effect, bistability and chaotic oscillations in a predator–prey discrete model of logistic type, Chaos solitons fractals 24, 85-101 (2005) · Zbl 1066.92053 · doi:10.1016/j.chaos.2004.07.018
[22]Neubert, M. G.; Kot, M.: The subcritical collapse of predator populations in discrete-time predator–prey models, Math. biosci. 110, 45-66 (1992) · Zbl 0747.92024 · doi:10.1016/0025-5564(92)90014-N
[23]Inoue, M.; Kamifukumoto, H.: Scenarios leading to chaos in a forced Lotka–Volterra model, Progr. theoret. Phys. 71, 930-937 (1984) · Zbl 1074.37522 · doi:10.1143/PTP.71.930 · doi:http://ptp.ipap.jp/link?PTP/71/930/
[24]Kuznetsov, Y. A.; Muratori, S.; Rinaldi, S.: Bifurcation and chaos in a periodic predator–prey model, Int. J. Bifurcations and chaos 2, 117-128 (1992) · Zbl 1126.92316 · doi:10.1142/S0218127492000112
[25]Rinaldi, S.; Muratori, S.; Kuznetsov, Y.: Multiple attractors, catastrophes and chaos in seasonally perturbed predator–prey communities, Bull. math. Biol. 55, 15-35 (1993) · Zbl 0756.92026
[26]Schaffer, W. M.; Pederson, B. S.; Moore, B. K.; Skarpaas, O.; King, A. A.; Bronnikova, T. V.: Sub-harmonic resonance and multi-annual oscillations in northern mammals: a non-linear dynamical systems perspective, Chaos solitons fractals 12, 251-264 (2001) · Zbl 0972.92034 · doi:10.1016/S0960-0779(00)00062-X
[27]Sabin, G. C. W.; Summers, D.: Chaos in periodically forced predator–prey ecosystem model, Math. biosci. 113, 91-113 (1993) · Zbl 0767.92028 · doi:10.1016/0025-5564(93)90010-8
[28]Summers, D.; Cranford, J. G.; Healey, B. P.: Chaos in periodically forced discrete-time ecosystem models, Chaos solitons fractals 11, 2331-2342 (2000) · Zbl 0964.92044 · doi:10.1016/S0960-0779(99)00154-X
[29]Vandermeer, J.: Seasonal isochronic forcing of Lotka–Volterra equations, Progr. theoret. Phys. 96, 13-28 (1996)
[30]Vandermeer, J.; Stone, L.; Blasius, B.: Categories of chaos and fractal boundaries in forced predator–prey models, Chaos solitons fractals 12, 265-276 (2001) · Zbl 0976.92033 · doi:10.1016/S0960-0779(00)00111-9
[31]Murray, J. D.: Mathematical biology, (1993)
[32]Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (1983)
[33]C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, 2nd Ed., Boca Raton, London, New York, 1999.
[34]Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos, (2003)
[35]Carr, J.: Application of center manifold theory, (1981)
[36]Li, T. Y.; Yorke, J. A.: Period three implies chaos, Amer. math. Monthly 82, 985-992 (1975) · Zbl 0351.92021 · doi:10.2307/2318254
[37]Devaney, R. L.: An introduction to chaotic dynamics systems, (1989) · Zbl 0695.58002
[38]Elaydi, S. N.: Discrete chaos, (2000) · Zbl 0945.37010
[39]Strogatz, S.: Nonlinear dynamics and chaos, (1994)
[40]Alligood, K. T.; Sauer, T. D.; Yorke, J. A.: Chaos–an introduction to dynamical systems, (1996)
[41]Ott, E.: Chaos in dynamical systems, (2002)
[42]Chen, G.; Dong, X.: From chaos to order: perspectives, methodologies, and applications, (1998)
[43]Elaydi, S. N.: An introduction to difference equations, (2005)
[44]Lynch, S.: Dynamical systems with applications using Mathematica, (2007)