zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A delay system approach to networked control systems with limited communication capacity. (English) Zbl 1202.93056
Summary: This paper addresses the problem of quantized feedback control for Networked Control Systems (NCSs). Firstly, with consideration of the effect of network conditions, such as network-induced delays, data packet dropouts and signal quantization, the sampled-data model of closed-loop feedback system based on the updating sequence of the event-driven holder is formulated, from which a continuous system with two additive delay components in the state is developed. Subsequently, by making use of a novel interval delay system approach, the stability analysis and control synthesis for NCSs with two/one static quantizer are solved accordingly. Finally, two illustrative examples are given to show the effectiveness and advantage of the method.
MSC:
93C15Control systems governed by ODE
93B52Feedback control
93C57Sampled-data control systems
References:
[1]Tian, Y. C.; Levy, D.: Compensation for control packet dropout in networked control systems, Information sciences 178, No. 5, 1263-1278 (2008) · Zbl 1139.93300 · doi:10.1016/j.ins.2007.10.012
[2]Yan, H. C.; Huang, X. H.; Wang, M.: Delay-dependent stability criteria for a class of networked control systems with multi-input and multi-output, Chaos, solitons fractals 34, No. 3, 997-1005 (2007) · Zbl 1138.34035 · doi:10.1016/j.chaos.2006.04.038
[3]Cao, J. W.; Zhong, S. M.; Hu, Y. Y.: Novel delay-dependent stability conditions for a class of MIMO networked control systems with nonlinear perturbation, Applied mathematics and computation 197, No. 2, 797-809 (2008) · Zbl 1136.93409 · doi:10.1016/j.amc.2007.08.059
[4]Yue, D.; Lam, J.; Wang, Z. D.: Persistent disturbance rejection via state feedback for networked control systems, Chaos, solitons fractal 40, No. 1, 382-391 (2009) · Zbl 1197.93140 · doi:10.1016/j.chaos.2007.07.073
[5]Tian, E. G.; Yue, D.; Peng, C.: Quantized output feedback control for networked control systems, Information sciences 178, No. 12, 2734-2749 (2008) · Zbl 1179.93096 · doi:10.1016/j.ins.2008.01.019
[6]Niu, Y. G.; Jia, T. G.; Wang, X. Y.; Yang, F. W.: Output-feedback control design for ncss subject to quantization and dropout, Information sciences 179, No. 21, 3804-3813 (2009) · Zbl 1171.93328 · doi:10.1016/j.ins.2009.07.006
[7]Zhang, H. G.; Li, M.; Yang, J.: Fuzzy model-based robust networked control for a class of nonlinear systems, IEEE transactions on systems, man, and cybernetics–part A: systems and humans 39, No. 2, 437-447 (2009)
[8]Zhang, H. G.; Yang, D. D.; Chai, T. Y.: Guaranteed cost networked control for T-S fuzzy systems with time delays, IEEE transactions on systems, man, and cybernetics: applications and reviews 37, No. 2, 160-172 (2007)
[9]Yue, D.; Peng, C.; Tang, G. Y.: Guaranteed cost control of linear systems over networks with state and input quantizations, IEEE Proceedings: control theory and applications 153, No. 6, 658-664 (2006)
[10]Yue, D.; Han, Q. L.; Lam, J.: Network-based robust H control of systems with uncertainty, Automatica 41, No. 6, 999-1007 (2005) · Zbl 1091.93007 · doi:10.1016/j.automatica.2004.12.011
[11]Zhang, H. G.; Yang, J.; Su, C. Y.: T-S fuzzy-model based robust H design for networked control systems with uncertainties, IEEE transactions on industrial informatics 3, No. 4, 289-301 (2007)
[12]Gao, H. J.; Chen, T. W.; Lam, J.: A new delay system approach to network-based control, Automatica 44, No. 1, 39-52 (2008) · Zbl 1138.93375 · doi:10.1016/j.automatica.2007.04.020
[13]Peng, C.; Tian, Y. C.: Networked H control of linear systems with state quantization, Information sciences 177, No. 24, 5763-5774 (2007) · Zbl 1126.93338 · doi:10.1016/j.ins.2007.05.025
[14]Yue, D.; Han, Q. L.: Network-based robust H filtering for uncertain linear systems, IEEE transactions on signal procession 54, No. 11, 4293-4301 (2006)
[15]Gao, H. J.; Chen, T. W.: H estimation for uncertain systems with limited communication capacity, IEEE transaction on automatic control 52, No. 11, 2070-2084 (2007)
[16]Gao, H. J.; Chen, T. W.: Network-based H output tracking control, IEEE transaction on automatic control 53, No. 3, 655-667 (2008)
[17]Jia, X. C.; Zhang, D. W.; Hao, X. H.: Fuzzy H tracking control for nonlinear networked control systems in T-S fuzzy model, IEEE transactions on systems, man, and cybernetics–part B: cybernetics 39, No. 4, 1073-1079 (2009)
[18]Tian, E. G.; Yue, D.; Zhao, X.: Quantised control design for networked control systems, IET control theory applications 1, No. 6, 1693-1699 (2007)
[19]Fu, M. Y.; Xie, L. H.: The sector bound approach to quantized feedback control, IEEE transactions on automatic control 50, No. 11, 1698-1711 (2005)
[20]Yue, D.; Han, Q. L.; Peng, C.: State feedback controller design of networked control systems, IEEE transactions on circuits and systems–II: express briefs 51, No. 11, 640-644 (2004)
[21]Kwon, O. M.; Park, J. H.: Delay-range-dependent stabilization of uncertain dynamic systems with interval time-varying delays, Applied mathematics and computation 208, No. 1, 58-68 (2009) · Zbl 1170.34054 · doi:10.1016/j.amc.2008.11.010
[22]Li, L.; Liu, X. D.; Chai, T. Y.: New approaches on H control of T-S fuzzy systems with interval time-varying delay, Fuzzy sets and systems 160, No. 12, 1669-1688 (2009) · Zbl 1175.93127 · doi:10.1016/j.fss.2008.11.021
[23]Tian, E. G.; Yue, D.; Zhang, Y. J.: Delay-dependent robust H control for T-S fuzzy system with interval time-varying delay, Fuzzy sets and systems 160, No. 12, 1708-1719 (2009) · Zbl 1175.93134 · doi:10.1016/j.fss.2008.10.014
[24]Zhang, Y. J.; Yue, D.; Tian, E. G.: New stability criteria of neural networks with interval time-varying delay: a piecewise delay method, Applied mathematics and computation 208, No. 1, 249-259 (2009) · Zbl 1171.34048 · doi:10.1016/j.amc.2008.11.046
[25]Gao, H. J.; Wu, J. L.; Shi, P.: Robust sampled-data H control with stochastic sampling, Automatica 45, No. 7, 1729-1736 (2009) · Zbl 1184.93039 · doi:10.1016/j.automatica.2009.03.004
[26]Li, H. J.; Yue, D.: Synchronization stability of general complex dynamical networks with time-varying delays: a piecewise analysis method, Journal of computational and applied mathematics 232, No. 2, 149-158 (2009) · Zbl 1178.34095 · doi:10.1016/j.cam.2009.02.104
[27]Ghaoui, L. E.; Oustry, F.; Aitrami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE transactions on automatic control 42, No. 8, 1171-1176 (1997) · Zbl 0887.93017 · doi:10.1109/9.618250