zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Observer-based sliding mode control for a class of discrete systems via delta operator approach. (English) Zbl 1202.93066
Summary: In this paper, an observer-based Sliding Mode Control (SMC) problem is investigated for a class of uncertain delta operator systems with nonlinear exogenous disturbance. A novel robust stability condition is obtained for a sliding mode dynamics by using Lyapunov theory in delta domain. Based on a designed sliding mode observer, a sliding mode controller is synthesized by employing SMC theory combined with reaching law technique. The robust asymptotical stability problem is also discussed for the closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability of sliding surfaces is also investigated in state-estimate space and estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the developed method.
93C30Control systems governed by other functional relations
93D09Robust stability of control systems
93B12Variable structure systems
93D20Asymptotic stability of control systems
[1]Middleton, R.; Goodwin, G.: Improved finite word length characteristics in digital control using delta operators, IEEE transactions on automatic control 31, No. 11, 1015-1021 (1986) · Zbl 0608.93053 · doi:10.1109/TAC.1986.1104162
[2]Goodwin, G. C.; Leal, R. Lozano; Mayne, D. Q.; Middleton, R. H.: Rapprochement between continuous and discrete model reference adaptive control, Automatica 22, No. 2, 199-207 (1986) · Zbl 0614.93039 · doi:10.1016/0005-1098(86)90081-6
[3]Li, G.; Gevers, M.: Comparative study of finite wordlength effects in shift and delta operator parameterizations, IEEE transactions on automatic control 38, No. 5, 803-807 (1993) · Zbl 0784.93010 · doi:10.1109/9.277251
[4]R.H. Istepanian, J. Wu, J. Chu, J.F. Whidborne, Maximizing lower bound stability measures of finite precision PID controller realizations by nonlinear programming, in: Proceedings of the American Control Conference, Philadelphia, PA, 1998, pp. 2596–2600.
[5]Anderson, S. R.; Kadirkamanathan, V.: Modelling and identification of non-linear deterministic systems in the delta-domain, Automatica 43, No. 11, 1859-1868 (2007) · Zbl 1129.93305 · doi:10.1016/j.automatica.2007.03.020
[6]Xia, Y.; Fu, M.; Yang, H.; Liu, G.: Robust sliding mode control for uncertain time-delay systems based on delta operator, IEEE transactions on industrial electronics 56, No. 9, 3646-3655 (2009)
[7]H. Yang, Y. Xia, M. Fu, P. Shi, Robust adaptive sliding mode control for uncertain delta operator systems, International Journal of Adaptive Control and Signal Processing, in press. · Zbl 1204.93057 · doi:10.1002/acs.1154
[8]Basin, M.; Rodriguez-Gonzalez, J.; Fridman, L.: Optimal and robust control for linear state-delay systems, Journal of the franklin institute 344, No. 6, 830-845 (2007) · Zbl 1119.49021 · doi:10.1016/j.jfranklin.2006.10.002
[9]Basin, M.; Rodriguez-Gonzalez, J.: A closed-form optimal control for linear systems with equal state and input delays, Automatica 41, No. 5, 915-920 (2005) · Zbl 1087.49028 · doi:10.1016/j.automatica.2004.12.004
[10]Gao, H.; Meng, X.; Chen, T.: Stabilization of networked control systems with a new delay characterization, IEEE transactions on automatic control 53, No. 9, 2142-2148 (2008)
[11]Gao, H.; Chen, T.; Lam, J.: A new delay system approach to network-based control, Automatica 44, No. 1, 39-52 (2008) · Zbl 1138.93375 · doi:10.1016/j.automatica.2007.04.020
[12]Xu, S.; Lam, J.: On equivalence and efficiency of certain stability criteria for time-delay systems, IEEE transactions on automatic control 52, No. 1, 95-101 (2007)
[13]Mahmoud, M. S.; Zribi, M.: Design of delay observer-based controllers for uncertain time-lag systems, Journal of math problems in engineering 5, No. 2, 121-137 (1999) · Zbl 0954.93029 · doi:10.1155/S1024123X99001027
[14]Mahmoud, M. S.; Zribi, M.: Stabilizing controllers using observers for uncertain systems with delays, International journal of systems science 32, No. 6, 767-773 (2001) · Zbl 1023.93057 · doi:10.1080/002077201750281972
[15]Mahmoud, M. S.; Zribi, M.: Guaranteed cost observer-based control of uncertain time-lag systems, Journal of computers and electrical engineering 29, No. 1, 193-212 (2003) · Zbl 1085.93513 · doi:10.1016/S0045-7906(01)00023-4
[16]Xu, S.; Lu, J.; Zhou, S.; Yang, C.: Design of observers for a class of discrete-time uncertain nonlinear systems with time delay, Journal of the franklin institute 341, No. 3, 295-308 (2004) · Zbl 1073.93007 · doi:10.1016/j.jfranklin.2003.12.012
[17]Chen, J.; Yang, C.; Lien, C.; Horng, J.: New delay-dependent non-fragile H observer-based control for continuous time-delay systems, Information sciences 178, No. 24, 4699-4706 (2008) · Zbl 1158.93017 · doi:10.1016/j.ins.2008.08.009
[18]Jo, N. H.; Seo, J. H.: Input output linearization approach to state observer design for nonlinear system, IEEE transactions on automatic control 45, No. 12, 2388-2393 (2000) · Zbl 0990.93017 · doi:10.1109/9.895580
[19]Liu, X.; Zhang, Q.: New approaches to H controller designs based on fuzzy observers for T–S fuzzy systems via LMI, Automatica 39, No. 9, 1571-1582 (2003) · Zbl 1029.93042 · doi:10.1016/S0005-1098(03)00172-9
[20]Utkin, V. I.: Variable structure systems with sliding modes, IEEE transactions on automatic control 22, No. 2, 212-222 (1977) · Zbl 0382.93036 · doi:10.1109/TAC.1977.1101446
[21]Xia, Y.; Liu, G. P.; Chen, J.; Rees, D.; Liang, J.: Sliding mode control of uncertain linear discrete time systems with input delay, IET control theory and applications 1, No. 4, 1169-1175 (2007)
[22]Xia, Y.; Jia, Y.: Robust sliding-mode control for uncertain time-delay systems: an LMI approach, IEEE transactions on automatic control 48, No. 6, 1086-1091 (2003)
[23]Shi, P.; Xia, Y.; Liu, G. P.; Rees, D.: On designing of sliding-mode control for stochastic jump systems, IEEE transactions on automatic control 51, No. 1, 97-103 (2006)
[24]Xia, Y.; Zhu, Z.; Li, C.; Yang, H.; Zhu, Q.: Robust adaptive sliding mode control for uncertain discrete-time systems with time delay, Journal of the franklin institute 347, No. 1, 339-357 (2010)
[25]Proca, A. B.; Keyhani, A.; Miller, J. M.: Sensorless sliding mode control of induction motors using operating condition dependent models, IEEE transaction on energy conversion 18, No. 2, 205-212 (2003)
[26]Basin, M. V.; De Loza, A. D. Ferreira; Fridman, L. M.: Sliding mode identification and control for linear uncertain stochastic systems, International journal of systems science 38, No. 11, 861-870 (2007) · Zbl 1160.93396 · doi:10.1080/00207720701409363
[27]Tan, C. P.; Edwards, C.: An LMI approach for designing sliding mode observers, International journal of control 74, No. 16, 1559-1568 (2001) · Zbl 1101.93304 · doi:10.1080/00207170110081723
[28]M’sirdi, N. K.; Rabhi, A.; Fridman, L.; Davila, J.; Delanne, Y.: Second order sliding-mode observer for estimation of vehicle dynamic parameters, International journal of vehicle design 48, No. 3–4, 190-207 (2008)
[29]Xiong, Y.; Saif, M.: Sliding mode observer for nonlinear uncertain systems, IEEE transactions on automatic control 46, No. 12, 2012-2017 (2001) · Zbl 1003.93007 · doi:10.1109/9.975511
[30]Davila, J.; Fridman, L.; Levant, A.: Second-order sliding-mode observer for mechanical systems, IEEE transactions on automatic control 50, No. 11, 1785-1789 (2005)
[31]Yan, X.; Edwards, C.: Nonlinear robust fault reconstruction and estimation using a sliding mode observer, Automatica 43, No. 9, 1605-1614 (2007) · Zbl 1128.93389 · doi:10.1016/j.automatica.2007.02.008
[32]Bergsten, P.; Palm, R.; Driankov, D.: Observers for Takagi–sugeno fuzzy systems, IEEE transactions on systems, man and cybernetics: part B 32, No. 1, 114-121 (2002)
[33]Niu, Y.; Lam, J.; Wang, X.; Ho, D. W. C.: Observer-based sliding mode control for nonlinear state-delayed systems, International journal of systems science 35, No. 2, 139-150 (2004) · Zbl 1059.93025 · doi:10.1080/00207720410001671732
[34]Wu, L.; Wang, C.; Zeng, Q.: Observer-based sliding mode control for a class of uncertain nonlinear neutral delay systems, Journal of the franklin institute 345, No. 3, 233-253 (2008) · Zbl 1167.93326 · doi:10.1016/j.jfranklin.2007.09.001
[35]Edwards, C.; Spurgeon, S. K.; Patton, R. J.: Sliding mode observers for fault detection and isolation, Automatica 36, No. 4, 541-553 (2000) · Zbl 0968.93502 · doi:10.1016/S0005-1098(99)00177-6
[36]Xie, L.: Output feedback H control of systems with parameter uncertainty, International journal of control 63, No. 4, 741-750 (1996) · Zbl 0841.93014 · doi:10.1080/00207179608921866
[37]Iwasaki, T.; Skelton, R. E.: All controllers for the general H control problem: LMI existence conditions and state space formulas, Automatica 30, No. 8, 1307-1317 (1994) · Zbl 0806.93017 · doi:10.1016/0005-1098(94)90110-4
[38]Petersen, I. R.: A stabilization algorithm for a class of uncertain linear systems, Systems and control letters 8, No. 4, 351-357 (1987) · Zbl 0618.93056 · doi:10.1016/0167-6911(87)90102-2
[39]Edwards, C.; Spurgeon, S. K.: Sliding mode control: theory and applications, (1998)
[40]Qiu, J.; Xia, Y.; Yang, H.; Zhang, J.: Robust stabilisation for a class of discrete-time systems with time-varying delays via delta operators, IET control theory and applications 2, No. 1, 87-93 (2008)