zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamical robust H filtering for nonlinear uncertain systems: an LMI approach. (English) Zbl 1202.93157
Summary: A new approach to robust H filtering for a class of nonlinear systems with time-varying uncertainties is proposed in the LMI framework based on a general dynamical observer structure. The nonlinearities under consideration are assumed to satisfy local Lipschitz conditions and appear in both state and measured output equations. The admissible Lipschitz constants of the nonlinear functions are maximized through LMI optimization. The resulting H observer guarantees asymptotic stability of the estimation error dynamics with prespecified disturbance attenuation level and is robust against time-varying parametric uncertainties as well as Lipschitz nonlinear additive uncertainty.
MSC:
93E11Filtering in stochastic control
93C10Nonlinear control systems
93B36H -control
93D20Asymptotic stability of control systems
References:
[1]De Souza, C. E.; Xie, L.; Wang, Y.: H filtering for a class of uncertain nonlinear systems, Systems and control letters 20, No. 6, 419-426 (1993) · Zbl 0784.93095 · doi:10.1016/0167-6911(93)90103-D
[2]Wang, Y.; Xie, L.; De Souza, C. E.: Robust control of a class of uncertain nonlinear systems, Systems and control letters 19, No. 2, 139-149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C
[3]Chen, M.; Chen, C.: Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances, IEEE transactions on automatic control 52, No. 12, 2365-2369 (2007)
[4]Zemouche, A.; Boutayeb, M.; Bara, G. I.: Observers for a class of Lipschitz systems with extension to H performance analysis, Systems and control letters 57, No. 1, 18-27 (2008) · Zbl 1129.93006 · doi:10.1016/j.sysconle.2007.06.012
[5]Fridman, E.; Shaked, U.: On regional nonlinear H-filtering, Systems and control letters 29, No. 4, 233-240 (1997) · Zbl 0877.93129 · doi:10.1016/S0167-6911(96)00061-8
[6]Nguang, S. K.; Fu, M.: Robust nonlinear H filtering, Automatica 32, No. 8, 1195-1199 (1996) · Zbl 0855.93086 · doi:10.1016/0005-1098(96)00067-2
[7]Mceneaney, W. M.: Robust H filtering for nonlinear systems, Systems and control letters 33, No. 5, 315-325 (1998) · Zbl 0902.93065 · doi:10.1016/S0167-6911(97)00124-2
[8]Chen, X.; Fukuda, T.; Young, K. D.: A new nonlinear robust disturbance observer, Systems and control letters 41, No. 3, 189-199 (2000) · Zbl 0986.93045 · doi:10.1016/S0167-6911(00)00056-6
[9]Yung, C.; Li, Y.; Sheu, H.: H filtering and solution bound for non-linear systems, International journal of control 74, No. 6, 565-570 (2001) · Zbl 1031.93147 · doi:10.1080/00207170010018797
[10]Sundarapandian, V.: Nonlinear observer design for a general class of nonlinear systems with real parametric uncertainty, Computers and mathematics with applications 49, No. 7–8, 1195-1211 (2005) · Zbl 1210.93032 · doi:10.1016/j.camwa.2004.06.034
[11]Aguilar-Lopez, R.; Maya-Yescas, R.: State estimation for nonlinear systems under model uncertainties: a class of sliding-mode observers, Journal of process control 15, No. 3, 363-370 (2005)
[12]Xu, J. X.; Xu, J.: Observer based learning control for a class of nonlinear systems with time-varying parametric uncertainties, IEEE transactions on automatic control 49, No. 2, 275-281 (2004)
[13]Marquez, H. J.: A frequency domain approach to state estimation, Journal of the franklin institute 340, No. 2, 147-157 (2003) · Zbl 1042.93013 · doi:10.1016/S0016-0032(03)00017-6
[14]Pertew, A. M.; Marquez, H. J.; Zhao, Q.: H observer design for Lipschitz nonlinear systems, IEEE transactions on automatic control 51, No. 7, 1211-1216 (2006)
[15]Xu, S.: Robust H filtering for a class of discrete-time uncertain nonlinear systems with state delay, IEEE transactions on circuits and systems I: Fundamental theory and applications 49, No. 12, 1853-1859 (2002)
[16]Lu, G.; Ho, D. W. C.: Robust H observer for nonlinear discrete systems with time delay and parameter uncertainties, IEE Proceedings: control theory and applications 151, No. 4, 439-444 (2004)
[17]Gao, H.; Wang, C.: Delay-dependent robust H and L2-L filtering for a class of uncertain nonlinear time-delay systems, IEEE transactions on automatic control 48, No. 9, 1661-1665 (2003)
[18]Abbaszadeh, M.; Marquez, H. J.: Robust H observer design for sampled-data Lipschitz nonlinear systems with exact and Euler approximate models, Automatica 44, No. 3, 799-806 (2008)
[19]Abbaszadeh, M.; Marquez, H. J.: LMI optimization approach to robust H observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems, International journal of robust and nonlinear control 19, No. 3, 313-340 (2009) · Zbl 1163.93027 · doi:10.1002/rnc.1310
[20]M. Abbaszadeh, H.J. Marquez, A robust observer design method for continuous-time Lipschitz nonlinear systems, in: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, USA, 2006, pp. 3895–3900.
[21]M. Abbaszadeh, H.J. Marquez, Robust Hobserver design for a class of nonlinear uncertain systems via convex optimization, in: Proceedings of the American Control Conference, New York, USA, 2007, pp. 1699–1704.
[22]Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994)
[23]Khargonekar, P. P.; Petersen, I. R.; Zhou, K.: Robust stabilization of uncertain linear systems: quadratic stabilizability and H control theory, IEEE transactions on automatic control 35, No. 3, 356-361 (1990) · Zbl 0707.93060 · doi:10.1109/9.50357
[24]Marquez, H. J.: Nonlinear control systems: analysis and design, (2003)