zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Image sharpening via Sobolev gradient flows. (English) Zbl 1202.94019
Summary: Motivated by some recent work in active contour applications, we study the use of Sobolev gradients for PDE-based image diffusion and sharpening. We begin by studying, for the case of isotropic diffusion, the gradient descent/ascent equation obtained by modifying the usual metric on the space of images, which is the L 2 metric, to a Sobolev metric. We present existence and uniqueness results for the Sobolev isotropic diffusion, derive a number of maximum principles, and show that the differential equations are stable and well-posed both in the forward and backward directions. This allows us to apply the Sobolev flow in the backward direction for sharpening. Favorable comparisons to the well-known shock filter for sharpening are demonstrated. Finally, we continue to exploit this same well-posed behavior both forward and backward in order to formulate new constrained gradient flows on higher order energy functionals which preserve the first order energy of the original image for interesting combined smoothing and sharpening effects.
MSC:
94A08Image processing (compression, reconstruction, etc.)
35A01Existence problems for PDE: global existence, local existence, non-existence
35A02Uniqueness problems for PDE: global uniqueness, local uniqueness, non-uniqueness
35A35Theoretical approximation to solutions of PDE