zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improved generalized belief propagation for vision processing. (English) Zbl 1202.94026
Summary: Generalized belief propagation (GBP) is a region-based belief propagation algorithm which can get good convergence in Markov random fields. However, the computation time is too heavy to use in practical engineering applications. This paper proposes a method to accelerate the efficiency of GBP. A caching technique and chessboard passing strategy are used to speed up algorithm. Then, the direction set method which is used to reduce the complexity of computing clique messages from quadric to cubic. With such a strategy the processing speed can be greatly increased. Besides, it is the first attempt to apply GBP for solving the stereomatching problem. Experiments show that the proposed algorithm can speed up by 15+ times for typical stereo matching problem and infer a more plausible result.
MSC:
94A08Image processing (compression, reconstruction, etc.)
94A12Signal theory (characterization, reconstruction, filtering, etc.)