zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. (English) Zbl 1203.34028
The authors discuss existence and multiplicity for a periodic boundary value problem. Krasnoselskii fixed point theorem in a cone is used in the analysis.

34B15Nonlinear boundary value problems for ODE
[1]Agarwal, R. P.; O’regan, D.; Staněk, S.: Singular lidstone boundary value problems with given maximum values for solutions, Nonlinear anal. 55, 859-881 (2003) · Zbl 1055.34040 · doi:10.1016/j.na.2003.06.001
[2]Agarwal, R. P.; O’regan, D.; Staněk, S.: Solvability of singular Dirichlet boundary-value problems with given maximum values for positive solutions, Proc. Edinburgh math. Soc. 48, 1-19 (2005) · Zbl 1066.34017 · doi:10.1017/S0013091503000774
[3]Atici, F. M.; Guseinov, G. Sh.: On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J. comput. Appl. math. 132, 341-356 (2001) · Zbl 0993.34022 · doi:10.1016/S0377-0427(00)00438-6
[4]Guo, D.; Lakshmikantham, V.: Nonlinear problems in abstract cones, (1988)
[5]Jiang, D.; Chu, J.; O’regan, D.; Agarwal, R.: Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces, J. math. Anal. appl. 286, 563-576 (2003) · Zbl 1042.34047 · doi:10.1016/S0022-247X(03)00493-1
[6]Krasnosel’skii, M.: Positive solutions of operator equations, (1964) · Zbl 0121.10604
[7]Li, Y.: Positive doubly periodic solutions of nonlinear telegraph equations, Nonlinear anal. 55, 245-254 (2003) · Zbl 1036.35020 · doi:10.1016/S0362-546X(03)00227-X
[8]Li, W.; Liu, X.: Eigenvalue problems for second-order nonlinear dynamic equations on time scales, J. math. Anal. appl. 318, 578-592 (2006) · Zbl 1099.34026 · doi:10.1016/j.jmaa.2005.06.030
[9]Liu, X.; Li, W.: Existence and uniqueness of positive periodic solutions of functional differential equations, J. math. Anal. appl. 293, 28-39 (2004) · Zbl 1057.34094 · doi:10.1016/j.jmaa.2003.12.012
[10]O’regan, D.; Wang, H.: Positive periodic solutions of systems of second order ordinary differential equations, Positivity 10, 285-298 (2006) · Zbl 1103.34027 · doi:10.1007/s11117-005-0021-2
[11]Torres, P.: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. differential equations 190, 643-662 (2003) · Zbl 1032.34040 · doi:10.1016/S0022-0396(02)00152-3
[12]Wang, H.: On the number of positive solutions of nonlinear systems, J. math. Anal. appl. 281, 287-306 (2003) · Zbl 1036.34032 · doi:10.1016/S0022-247X(03)00100-8
[13]Zhang, Z.; Wang, J.: On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations, J. math. Anal. appl. 281, 99-107 (2003) · Zbl 1030.34024 · doi:10.1016/S0022-247X(02)00538-3