zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge. (English) Zbl 1203.34070
Authors’ summary: We consider a predator-prey model with Holling type II functional response incorporating a constant prey refuge and a constant-rate prey harvesting. Depending on the constant prey refuge m, which provides a condition for protecting m of prey from predation, and the constant-rate prey harvesting, some sufficient conditions for the instability and global stability of the equilibria, and the existence and uniqueness of limit cycles of the model are obtained. We also show the influences of prey refuge and harvesting efforts on equilibrium density values. Numerical simulations are carried out to illustrate the feasibility of the obtained results and the dependence of the dynamic behavior on the harvesting efforts or prey refuge.
MSC:
34C60Qualitative investigation and simulation of models (ODE)
92D25Population dynamics (general)
34C05Location of integral curves, singular points, limit cycles (ODE)
34D23Global stability of ODE