zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems. (English) Zbl 1203.65089
Summary: Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. The aim of this paper is to introduce a hybrid approach combining two heuristic optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA). Our approach integrates the merits of both GA and PSO and it has two characteristic features. Firstly, the algorithm is initialized by a set of random particles which travel through the search space. During this travel an evolution of these particles is performed by integrating PSO and GA. Secondly, to restrict velocity of the particles and control it, we introduce a modified constriction factor. Finally, the results of various experimental studies using a suite of multimodal test functions taken from the literature have demonstrated the superiority of the proposed approach to finding the global optimal solution.
MSC:
65K05Mathematical programming (numerical methods)
90C15Stochastic programming
90C59Approximation methods and heuristics
References:
[1]Rao, S. S.: Engineering optimization: theory and practice, (2003)
[2]Shi, X. H.; Liang, Y. C.; Lee, H. P.; Lu, C.; Wang, L. M.: An improved GA and a novel PSO-GA-based hybrid algorithm, Information processing letters 93, 255-261 (2005) · Zbl 1173.68828 · doi:10.1016/j.ipl.2004.11.003
[3]Panduro, M. A.; Brizuela, C. A.; Balderas, L. I.; Acosta, D. A.: A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays, Progress in electromagnetics research B 13, 171-186 (2009)
[4]Uysal, O.; Bulkan, S.: Comparison of genetic algorithm and particle swarm optimization for bicriteria permutation flowshop scheduling problem, International journal of computational intelligence research 4, No. 2, 159-175 (2008)
[5]Yang, X.; Yuan, J.; Yuan, J.; Mao, H.: A modified particle swarm optimizer with dynamic adaptation, Applied mathematics and computation 189, 1205-1213 (2007) · Zbl 1122.65364 · doi:10.1016/j.amc.2006.12.045
[6]Shelokar, P. S.; Siarry, P.; Iayaraman, V. K.; Kulkarni, B. D.: Particle swarm and ant colony algorithms hybridized for improved continous optimization, Applied mathematics and computation 188, 129-142 (2007) · Zbl 1114.65334 · doi:10.1016/j.amc.2006.09.098
[7]Kao, Y.; Zahara, E.: A hybrid genetic algorithm and particle swarm optimization for multimodal functions, Applied soft computing, 849-857 (2008)
[8]Koziel, S.; Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization, Evolutionary computation 7, No. 1, 19-44 (1999)
[9]Goldberg, D. E.: Genetic algorithms in search, optimization machine learning, (1989)
[10]Kennedy, J.; Eberhart, R. C.: Swarm intelligence, (2001)
[11]Man, K. F.; Tang, K. S.; Kwong, S.: Genetic algorithms: concepts and designs, (1999)
[12]Eberhart, R. C.; Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization, Congress on evolutionary computing 1, 84-88 (2000)
[13]I. Oliver, D. Smith, J. Holland, A study of permutation crossover operators on the traveling salesman problem, in: Proc. 2nd ICGA, Massachusetts Institute of Technology, USA, July 28–31, 1987, pp. 224–230.
[14]Bramlette, M. F.: Initialization mutation and selection methods in genetic algorithms for functions optimization, Proceedings of the ICGA 4, 100-107 (1991)
[15]Mousa, A. A.; El-Desoky, I. M.: GENLS: co-evolutionary algorithm for nonlinear system of equations, Applied mathematics and computation 197, 633-642 (2008) · Zbl 1135.65325 · doi:10.1016/j.amc.2007.08.088
[16]K. Sedlaczek, P. Eberhard, Constrained Particle Swarm Optimization of Mechanical Systems, in: 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, 30 May–03 June, Brazil, 2005.