zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier-Stokes equations. (English) Zbl 1203.76086
Summary: We present a new single-step characteristic-curve finite element scheme of second order in time for the nonstationary incompressible Navier-Stokes equations. After supplying correction terms in the variational formulation, we prove that the scheme is of second order in time. The convergence rate of the scheme is numerically recognized by computational results.
MSC:
76M10Finite element methods (fluid mechanics)
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
35Q30Stokes and Navier-Stokes equations
76D05Navier-Stokes equations (fluid dynamics)
References:
[1]Baba, K., Tabata, M.: On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. 15, 3–25 (1981)
[2]Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)
[3]Bristeau, M.O., Glowinski, R., Mantel, B., Periaux, J., Perrier, P., Pironneau, O.: A finite element approximation of Navier-Stokes equations for incompressible viscous fluids. Iterative methods of solution. In: Rautmann, R. (ed.) Approximation Methods for Navier-Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 78–128. Springer, Berlin (1980)
[4]Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[5]Boukir, K., Maday, Y., Metivet, B., Razafindrakoto, E.: A high-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997) · doi:10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A
[6]Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)
[7]Douglas Jr., J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982) · Zbl 0492.65051 · doi:10.1137/0719063
[8]Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992) · Zbl 0765.76048 · doi:10.1016/0045-7825(92)90041-H
[9]FreeFem, http://www.freefem.org/
[10]Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)
[11]Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989) · Zbl 0697.76100 · doi:10.1016/0045-7825(89)90111-4
[12]Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984) · Zbl 0542.76093 · doi:10.1016/0045-7825(84)90157-9
[13]Hansbo, P., Johnson, C.: Adaptive streamline diffusion methods for compressible flow using conservation variables. Comput. Methods Appl. Mech. Eng. 87, 267–280 (1991) · Zbl 0760.76046 · doi:10.1016/0045-7825(91)90008-T
[14]Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge Univ. Press, Cambridge (1987)
[15]Le Beau, G.J., Ray, S.E., Aliabadi, S.K., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Methods Appl. Mech. Eng. 104, 397–422 (1993) · Zbl 0772.76037 · doi:10.1016/0045-7825(93)90033-T
[16]Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982) · Zbl 0505.76100 · doi:10.1007/BF01396435
[17]Pironneau, O.: Finite Element Methods for Fluids. Wiley, New York (1989)
[18]Pironneau, O., Liou, J., Tezduyar, T.: Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains. Comput. Methods Appl. Mech. Eng. 100, 117–141 (1992) · Zbl 0761.76073 · doi:10.1016/0045-7825(92)90116-2
[19]Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-diffusion problems. Numer. Math. 92, 161–177 (2002) · Zbl 1005.65114 · doi:10.1007/s002110100364
[20]Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)
[21]Süli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53, 459–483 (1988) · Zbl 0637.76024 · doi:10.1007/BF01396329
[22]Tabata, M.: A finite element approximation corresponding to the upwind finite differencing. Mem. Numer. Math. 4, 47–63 (1977)
[23]Tabata, M.: Discrepancy between theory and real computation on the stability of some finite element schemes. J. Comput. Appl. Math. 199, 424–431 (2007) · Zbl 1108.65092 · doi:10.1016/j.cam.2005.08.042
[24]Tabata, M., Fujima, S.: Finite-element analysis of high Reynolds number flows past a circular cylinder. J. Comput. Appl. Math. 38, 411–424 (1991) · Zbl 0742.76052 · doi:10.1016/0377-0427(91)90186-N
[25]Tabata, M., Fujima, S.: Robustness of a characteristic finite element scheme of second order in time increment. In Groth, C., Zingg, D.W. (eds.) Computational Fluid Dynamics 2004, pp. 177–182. Springer, Berlin (2006)
[26]Tabata, M., Tagami, D.: Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows. Jpn J. Ind. Appl. Math. 17, 371–389 (2000) · doi:10.1007/BF03167373
[27]Tezduyar, T.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992) · Zbl 0747.76069 · doi:10.1016/S0065-2156(08)70153-4
[28]Thomasset, F.: Implementation of Finite Element Methods for Navier-Stokes Equations. Springer, New York (1981)