zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of singular complex dynamical networks with time-varying delays. (English) Zbl 1203.90170
Summary: This paper considers delay dependent synchronizations of singular complex dynamical networks with time-varying delays. A modified Lyapunov-Krasovskii functional is used to derive a sufficient condition for synchronization in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.
90C35Programming involving graphs or networks
90B15Network models, stochastic (optimization)
90C59Approximation methods and heuristics
[1]Barahona, M.; Pecora, L. M.: Synchronization in small-world systems, Physical review letters 89, No. 5, 54101 (2002)
[2]Wu, C. W.: Synchronizaton in coupled chaotic circuits and systems, (2002)
[3]Luo, A. C. J.: A theory for synchronization of dynamical systems, Communications in nonlinear science and numerical simulation 14, No. 5, 1901-1951 (2009)
[4]Wang, X.; Chen, G.: Synchronization in small-world dynamical networks, International journal of bifurcation and chaos 12, No. 1, 187-192 (2002)
[5]X.F. Wang, G. Chen, Synchronization in scale-free dynamical networks: Robustness and fragility, 2001. Available from: arxiv:cond-mat/0105014.
[6]Li, C.; Chen, G.: Synchronization in general complex dynamical networks with coupling dylays, Physica A: statistical mechanics and its applications 343, 263-278 (2004)
[7]Lu, J.; Chen, G.: A time-varying complex dynamical network model and its comtrolled synchronization criteria, IEEE transactions on automatic control 50, No. 6, 841-846 (2005)
[8]Zhou, Jin; Lu, Jun An; Lu, Jinhu: Adaptive synchronization of an uncertain complex dynamical network, IEEE transactions on automatic control 51, No. 4, 652-656 (2006)
[9]Zhang, Qunjiao; Lu, Junan; Lu, Jinhu; Tse, C. K.: Adaptive feedback synchronization of a general complex dynamical network with delayed nodes, IEEE transactions on circuits and systems - II 55, No. 2, 183-187 (2008)
[10]Li, K.; Guan, S.; Gong, X.; Lai, C. H.: Synchronization stability of general complex dynamical networks with time-varying delays, Physics letters A 372, No. 48, 7133-7139 (2008) · Zbl 1226.05232 · doi:10.1016/j.physleta.2008.10.054
[11]Xiong, W.; Ho, D. W. C.; Cao, J.: Synchronization analysis of singular hybrid coupled networks, Physics letters A 372, No. 44, 6633-6637 (2008) · Zbl 1225.34062 · doi:10.1016/j.physleta.2008.09.030
[12]Gu, K.; Kharitonov, V.; Chen, J.: Stability of time-delay systems, (2003)
[13]Skelton, R. E.; Iwasaki, T.; Grigoriadis, K. M.: A unified algebraic approach to linear control design, (1997)
[14]Yakubovich, V. A.: S-procedure in nonlinear control theory, Vestnik leningrad university 1, 62-77 (1971) · Zbl 0232.93010
[15]Xu, Shengyuan; Van Dooren, P.; Stefan, R.; Lam, J.: Robust stability and stabilization for singular systems with state delaay and parameter uncertainty, IEEE transactions on automatic control 47, No. 7, 1122-1128 (2002)
[16]Lu, Guoping; Ho, D. W. C.: Generalized quadratic stability for continuous-time singular systems with nonlinear perturbation, IEEE transactions on automatic control 51, No. 5, 818-823 (2006)
[17]Xu, D.; Su, Z.: Synchronization criterions and pinning control of general complex networks with time delay, Applied mathematics and computation 215, No. 4, 1593-1608 (2009) · Zbl 1188.34100 · doi:10.1016/j.amc.2009.07.015
[18]Park, J. H.; Lee, S. M.; Jung, H. Y.: LMI optimization approach to synchronization of stochastic delayed discrete-time complex networks, Journal of optimization theory and applications 143, No. 2, 357-367 (2009) · Zbl 1175.90085 · doi:10.1007/s10957-009-9562-z
[19]Ji, D. H.; Park, J. H.; Yoo, W. J.; Won, S. C.; Lee, S. M.: Synchronization criterion for Lur’e type complex dynamical networks with time-varying delay, Physics letters A 374, No. 10, 1218-1227 (2010)
[20]Sun, Wen; Chen, Zhong; Lü, Yibing; Chen, Shihua: An intriguing hybrid synchronization phenomenon of two coupled complex networks, Applied mathematics and computation 216, No. 8, 2301-2309 (2010) · Zbl 1203.93163 · doi:10.1016/j.amc.2010.03.066
[21]Lee, S. M.; Ji, D. H.; Park, J. H.; Won, S. C.: H synchronization of chaotic systems via dynamic feedback approach, Physics letters A 372, No. 29, 4905-4912 (2008) · Zbl 1221.93087 · doi:10.1016/j.physleta.2008.05.047
[22]Li, Hongjie; Yue, Dong: Synchronization stability of general complex dynamical networks with time-varying delays: a piecewise analysis method, Neurocomputing 232, No. 2, 149-158 (2009) · Zbl 1178.34095 · doi:10.1016/j.cam.2009.02.104
[23]Yue, Dong; Li, Hongjie: Synchronization stability of continuous/discrete complex dynamical networks with interval time-varying delays, Neurocomputing 73, No. 4 – 6, 809-819 (2010)