zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. (English) Zbl 1203.93125
Summary: Chaotic systems in practice are always influenced by some unknown factors, which may make the chaotic behavior completely different from that of unaffected system. In this paper, the generalized lag-synchronization for a general class of coupled chaotic systems with mixed delays, uncertain parameters, as well as external perturbations is investigated. A simple but all-powerful robust adaptive controller is designed to achieve this goal. Based on Lyapunov stability theory, integral inequality and Barbalat’s lemma, rigorous proofs are given for the asymptotic stability of the error systems of the coupled systems with or without external perturbations. Sufficient conditions for inaccuracy or accuracy estimation of unknown parameters are also given. Moreover, the designed adaptive controller has better anti-interference capacity than those of references. Numerical simulations verify the effectiveness of the theoretical results.
MSC:
93C73Perturbations in control systems
93E10Estimation and detection in stochastic control
62H10Multivariate distributions of statistics
34H10Chaos control (ODE)
References:
[1]Pecora, L.; Carroll, T.: Synchronization in chaotic systems, Phys. rev. Lett. 64, 821-824 (1990)
[2]Sorrentio, F.; Ott, E.: Adaptive synchronization of dynamics on evolving complex networks, Phys. rev. Lett. 100, 114101-114104 (2008)
[3]Chopra, N.; Spong, M. K.: On exponential synchronization of Kuramoto oscillators, IEEE trans. Automat. control 54, No. 2, 353-357 (2009)
[4]Budini, A. A.; Cáceres, M. O.: Adiabatic small noise fluctuations around anticipated synchronization: a perspective from scalar master–slave dynamics, Physica A 387, 4483-4496 (2008)
[5]Sundar, S.; Minai, A.: Synchronization of randomly multiplexed chaotic systems with application to communication, Phys. rev. Lett. 85, 5456-5459 (2000)
[6]Bowong, S.; Kakmeni, F. M. Moukam; Fotsin, H.: A new adaptive observer-based synchronization scheme for private communication, Phys. lett. A 355, 193-201 (2006)
[7]Shahverdiev, E. M.; Sivaprakasam, S.; Shore, K. A.: Lag-synchronization in time-delayed systems, Phys. lett. A 292, 320-324 (2002) · Zbl 0979.37022 · doi:10.1016/S0375-9601(01)00824-6
[8]Budini, Adrián A.; Cáceres, Manuel O.: Adiabatic small noise fluctuations around anticipated synchronization: a perspective from scalar master–slave dynamics, Physica A 387, No. 18, 4483-4496 (2008)
[9]Huang, Y.; Hwang, C.; Liao, T.: Generalized pejective synchronization of chaotic systems with unknown dead-zone input: observer-based approach, Chaos 16, 033125 (2006) · Zbl 1146.93368 · doi:10.1063/1.2336728
[10]Fabricio, A.; Zhao, L.; Marcos, G.; Elbert, E.: Chaotic phase synchronization and desynchronization in an oscillator network for object selection, Neural netw. 22, No. 5–6, 728-737 (2009)
[11]Rulkov, N.; Sushchik, M.; Tsimring, L.; Abarbanel, H.: Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. rev. E 51, 980-994 (1995)
[12]Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability and equivalence of unidirectionally coupled systems, Phys. rev. Lett. 76, No. 11, 1816-1819 (1996)
[13]Abarbanel, H.; Rulkov, N.; Sushchik, M.: Generalized synchronization of chaos: the auxiliary system approach, Phys. rev. E 53, 4528-4535 (1996)
[14]Meng, J.; Wang, X.: Generalized synchronization via nonlinear control, Chaos 18, 023108 (2008)
[15]He, W.; Cao, J.: Generalized synchronizaton of chaotic systems: an auxiliary system approach via matrix measure, Chaos 19, 013118 (2009)
[16]Ge, Z.; Chang, C.: Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function, Chaos solitons fractals 39, 1959-1974 (2009) · Zbl 1197.37134 · doi:10.1016/j.chaos.2007.06.081
[17]Yu, Y.; Li, H.: Adaptive generalized function projective synchronization of uncertain chaotic systems, Nonlinear anal. RWA (2009)
[18]Senthilkumar, D.; Lakshmanan, M.; Kurths, J.: Transition from phase to generalized synchronization in time-delay systems, Chaos 18, 023118 (2008)
[19]Li, R.: Exponential generalized synchronization of uncertain coupled chaotic systems by adaptive control, Commun. nonlinear sci. Numer. simul. 14, 2757-2764 (2009) · Zbl 1221.93244 · doi:10.1016/j.cnsns.2008.10.006
[20]Shahverdiev, E.; Sivaprakasam, S.; Shore, K.: Lag-synchronization in time-delayed systems, Phys. lett. A 292, 320-324 (2002) · Zbl 0979.37022 · doi:10.1016/S0375-9601(01)00824-6
[21]Li, C.; Liao, X.; Wong, K.: Chaotic lag-synchronization of coupled time-delayed systems and its applications in secure communication, Physica D 194, 187-202 (2004) · Zbl 1059.93118 · doi:10.1016/j.physd.2004.02.005
[22]Huang, Y.; Wang, Y.; Xiao, J.: Generalized lag-synchronization of continuous chaotic system, Chaos solitons fractals 40, 766-770 (2009) · Zbl 1197.37030 · doi:10.1016/j.chaos.2007.08.022
[23]Lin, J.; Liao, T.; Yan, J.; Yau, H.: Synchronization of unidirectional coupled chaotic systems with unknown channel time-delay: adaptive robust observer-based approach, Chaos solitons fractals 26, 971-987 (2005) · Zbl 1093.93535 · doi:10.1016/j.chaos.2005.02.005
[24]Song, Q.: Synchronization analysis of coupled connected neural networks with mixed delays, Neurocomputing 72, No. 16–18, 3907-3914 (2009)
[25]Gu, K. Q.; Kharitonov, V. L.; Chen, J.: Stability of time-delay system, (2003)
[26]Popov, V.: Hyperstability of control system, (1973)
[27]Chen, M.; Chen, W.: Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems, Chaos solitons fractals 41, 2716-2724 (2009) · Zbl 1198.93155 · doi:10.1016/j.chaos.2008.10.003