zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An intriguing hybrid synchronization phenomenon of two coupled complex networks. (English) Zbl 1203.93163
Summary: This paper investigates the hybrid synchronization problem of two coupled complex networks. Employing linear feedback and adaptive feedback control methods which are simple, efficient, and easy to implement in practical applications, we obtain some useful criteria of the hybrid synchronization of two coupled networks based on Lyapunov’s stability theory and Lasalle’s invariance principle. It shows that under suitable conditions, two coupled complex networks can realize an intriguing hybrid synchronization: the outer anti-synchronization between the driving network and the response network, and the inner complete synchronization in the driving network and the response network, respectively. Numerical simulations demonstrate the effectiveness of the proposed hybrid synchronization scheme.
MSC:
93D05Lyapunov and other classical stabilities of control systems
93B52Feedback control
93C40Adaptive control systems
References:
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, No. 8, 821-824 (1990)
[2]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Synchronized firing in coupled inhomogeneous excitable neurons, Phys. rev. Lett. 76, 1804-1807 (1996)
[3]Li, C.; Chen, G.: Synchronization in general complex dynamical networks with coupling delays, Physica A 343, 263-278 (2004)
[4]Chen, H. K.; Sheu, L. J.: The transient ladder synchronization of chaotic systems, Phys. lett. A 355, 207-211 (2006)
[5]Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.: Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. rev. E 51, 980-994 (1995)
[6]Strogatz, S. H.: Exploring complex networks, Nature 410, 268-276 (2001)
[7]Albert, R.; Barabasi, A. L.: Statistic mechanics of complex networks, Rev. modern phys. 74, 47-91 (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[8]Barabona, Mauricio; Pecorra, Louis M.: Synchronization in small-world systems, Phys. rev. Lett. 29, 054101 (2002)
[9]Watts, Duncan J.; Strogatz, Steven H.: Collective dynamics of ’small-world’ networks, Nature 393, 440-442 (1998)
[10]Wang, X. F.; Chen, G.: Synchronization in small-world dynamical networks, Int. J. Bifur. chaos 12, No. 1, 187-192 (2002)
[11]Gao, Huijun; Lam, James; Chen, Guanrong: New criteria for synchronization stability of general complex dynamical networks with coupling delays, Phys. lett. A 360, 263-273 (2006)
[12]Dhamala, M.; Jirsa, V. K.; Ding, M.: Enhancement of neural synchrony by coupling delay, Phys. rev. Lett. 92, No. 7, 074104 (2004)
[13]Jiang, G. P.; Zheng, W. X.; Chen, G.: Global chaos synchronization with channel time-delay, Chaos solitons fract. 20, 267-275 (2004) · Zbl 1045.34021 · doi:10.1016/S0960-0779(03)00374-6
[14]Wu, C. W.: Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity 18, 1057-1064 (2005) · Zbl 1089.37024 · doi:10.1088/0951-7715/18/3/007
[15]Wu, C. W.; Chua, L. O.: Synchronization in an array of linearly coupled dynamical systems, IEEE trans. Circ. syst. I 42, No. 8, 430-447 (1995) · Zbl 0867.93042 · doi:10.1109/81.404047
[16]Pecorra, Louis M.; Carroll, Thomas L.: Master stability function for synchronized coupled systems, Phys. rev. Lett. 9, 2109 (1998)
[17]Lu, W.; Chen, T.: New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D 213, 214-230 (2006) · Zbl 1105.34031 · doi:10.1016/j.physd.2005.11.009
[18]Lu, W.; Chen, T.; Chen, Guanrong: Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D 221, 118-134 (2006) · Zbl 1111.34056 · doi:10.1016/j.physd.2006.07.020
[19]Belykh, V.; Belykh, I.; Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems, Physica D 195, 159C187 (2004) · Zbl 1098.82622 · doi:10.1016/j.physd.2004.03.012
[20]Chen, Tianping; Liu, Xiwei; Lu, Wenlian: Pinning complex networks by a single controller, IEEE trans. Circuits syst. I-regular paper 54, No. 6, 1317-1326 (2007)
[21]Miller, D.; Kowalski, K.; Lozowski, A.: Synchronization and antisynchronization of Chua’s oscillators via a piecewise linear coupling circuit, Chaos 5, 458-462 (1999)
[22]Wedekind, I.; Parlitz, U.: Experimental observation of synchronization and anti-synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor laser, Int. J. Bifur. chaos 11, 1141-1147 (2001)
[23]Hu, J.; Chen, S.; Chen, L.: Adaptive control for antisynchronization of Chua’s chaotic system, Phys. lett. A 339, 455-460 (2005) · Zbl 1145.93366 · doi:10.1016/j.physleta.2005.04.002
[24]Guo-Hui, Li: Synchronization and anti-synchronization of colpitts oscillators using active control, Chaos solitons fract. 26, 87-93 (2005) · Zbl 1122.34320 · doi:10.1016/j.chaos.2004.11.094
[25]Li, W. L.; Chen, X. Q.; Shen, Z. P.: Anti-synchronization of two different chaotic systems, Physica A 387, 3747-3750 (2008)
[26]Li, C. D.; Liao, X. F.: Anti-synchronization of a class of coupled chaotic systems via linear feedback control, Int. J. Bifur. chaos 16, No. 4, 1041-1047 (2006) · Zbl 1097.94037 · doi:10.1142/S0218127406015295
[27]Meng, J.; Wang, X.: Robust antisynchronization of a class of delayed chaotic neural networks, Chaos 17, 023113 (2007) · Zbl 1159.37371 · doi:10.1063/1.2731306
[28]Zhu, H. B.; Cui, B. T.: The antisynchronization of a class of chaotic delayed neural networks, Chaos 17, 043122 (2007) · Zbl 1163.37392 · doi:10.1063/1.2816941
[29]Li, Rui-Hong: A special full-state hybrid projective synchronization in symmetrical chaotic systems, Appl. math. Comp. 200, 321-329 (2008) · Zbl 1152.65117 · doi:10.1016/j.amc.2007.11.010
[30]Yau, H. -T.: Synchronization and anti-synchronization coexist in two-degree-of-freedom dissipative gyroscope with nonlinear inputs, Nonlinear anal.: real world appl. 9, 303-304 (2007)
[31]Chen, J. -H.; Chen, H. -K.; Lin, Y. -K.: Synchronization and anti-synchronization coexist in Chen – Lee chaotic systems, Chaos solitons fract. 39, 306-307 (2007)
[32]Khalil, Hassan K.: Nonlinear systems, (1996)