zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Initial conditions and initialization of linear fractional differential equations. (English) Zbl 1203.94058
Summary: Mastery of the initial conditions of fractional order systems remains an open problem, in spite of a great number of contributions. This paper proposes a solution dedicated to linear fractional differential equations (FDEs), which is based on an equivalence principle between the original system and an exactly equivalent infinite dimensional ordinary differential equation (ODE). This equivalence principle is derived from the fractional integration operator concept and the frequency distributed state space model of this operator. Thanks to this principle, the FDE initial conditions problem is converted into a conventional ODE initialization problem, however with an infinite dimensional state vector. Practical FDE initialization is performed using an observer based technique applied to the equivalent ODE; a numerical example demonstrates the efficiency of this approach.
94A12Signal theory (characterization, reconstruction, filtering, etc.)
34A08Fractional differential equations
[1]Aoun, M.; Malti, R.; Levron, F.; Oustaloup, A.: Numerical simulations of fractional systems: an overview of existing methods and improvements, Nonlinear dynamics 38, 117-131 (2004) · Zbl 1134.65300 · doi:10.1007/s11071-004-3750-z
[2]Battaglia, J. L.; Cois, O.; Puigsegur, L.; Oustaloup, A.: Solving an inverse heat conduction problem using a non integer identified model, International journal of heat and mass transfer 44, 2671-2680 (2001) · Zbl 0981.80007 · doi:10.1016/S0017-9310(00)00310-0
[3]A. Benchellal, Modélisation des interfaces de diffusion à l’aide d’opérateurs d’intégration fractionnaires, Thèse de doctorat, Université de Poitiers, France, 2008.
[4]Caputo, M.: Elasticita e dissipazione, (1969)
[5]Garcia, G.; Bernussou, J.: Identification of the dynamics of a lead acid battery by a diffusive model, Proceedings of ESSAIM 5 (1998) · Zbl 0912.93019 · doi:10.1051/proc:1998015 · doi:http://www.edpsciences.org/articles/proc/Vol.5/contents.htm
[6]Hartley, T. T.; Lorenzo, C. L.: Dynamics and control of initialized fractional-order systems, Nonlinear dynamics 29, 201-233 (2002) · Zbl 1021.93019 · doi:10.1023/A:1016534921583
[7]D. Heleschewitz, D. Matignon, Diffusive realizations of fractional integro-differential operators: structural analysis under approximation, in: Conference IFAC, System, Structure and Control, vol. 2, Nantes, France, July 1998, pp. 243–248.
[8]Kailath, T.: Linear systems, (1980) · Zbl 0454.93001
[9]C.F. Lorenzo, T.T. Hartley, Initialization in fractional order systems, in: Proceedings of the European Control Conference (ECC’01), Porto, Portugal, 2001, pp. 1471–1476.
[10]D.G. Luenberger, An introduction to observers, IEEE Transactions on Automatic Control, AC-16 (December 1971) 596–603.
[11]D. Matignon, Représentations en variables d’état de modèles de guides d’ondes avec dérivation fractionnaire, Thèse de Doctorat. Université de Paris XI, ORSAY, 1994.
[12]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[13]Montseny, G.: Diffusive representation of pseudo differential time operators, Proceedings of ESSAIM 5, 159-175 (1998) · Zbl 0916.93022 · doi:10.1051/proc:1998005 · doi:http://www.edpsciences.org/articles/proc/Vol.5/contents.htm
[14]Oldham, K. B.; Spanier, J.: The fractional calculus, (1974)
[15]Ortigueira, M. D.: On the initial conditions in continuous-time fractional linear systems, Signal processing 83, 2301-2309 (2003) · Zbl 1145.94367 · doi:10.1016/S0165-1684(03)00183-X
[16]Oustaloup, A.: La commande CRONE, (1991)
[17]Oustaloup, A.: La dérivation non-entière: théorie, synthèse et applications, (1995) · Zbl 0864.93004
[18]I. Podlubny, L. Dorcak, I. Kostial, On fractional derivatives, fractional order systems and PIλDμ control, in: Proceedings of the Conference on Decision and Control, San Diego, 1997.
[19]Podlubny, I.: Fractional differential equations, (1999)
[20]Poinot, T.; Trigeassou, J. C.: A method for modelling and simulation of fractional systems, Signal processing 83, 2319-2333 (2003) · Zbl 1145.94372 · doi:10.1016/S0165-1684(03)00185-3
[21]Poinot, T.; Trigeassou, J. C.: Identification of fractional systems using an output-error technique, Nonlinear dynamics 38, 133-154 (2004) · Zbl 1134.93324 · doi:10.1007/s11071-004-3751-y
[22]J. Sabatier, et al., On a representation of fractional order systems: interests for the initial condition problem, in: Third IFAC Workshop, FDA’08, Ankara, Turkey, 5–7 November 2008.
[23]Thomson (Lord Kelvin), W.: Mechanical integration of the general linear differential equation of any order with variable coefficients, Proceedings of royal society 24, 271-275 (1876) · Zbl 08.0200.01 · doi:10.1098/rspl.1875.0036
[24]J.C. Trigeassou, et al., Modelling and identification of a non integer order system, in: European Control Conference, ECC’09, KARLSRUHE, Germany, 1999.
[25]J.C. Trigeassou, N. Maamri, State-space modelling of fractional differential equations and the initial condition problem, IEEE SSD’09, Djerba, Tunisia, 2009.
[26]J.C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, A Lyapunov approach to the stability of fractional differential equations, in: Symposium on Fractional Signal and Systems (FSS’09), Lisbon, 4–6 November, 2009.