zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hyperchaotic secure communication via generalized function projective synchronization. (English) Zbl 1203.94128
Summary: This paper presents two different hyperchaotic secure communication schemes by using generalized function projective synchronization (GFPS), where the drive and response systems could be synchronized up to a desired scaling function matrix. The unpredictability of the scaling functions can additionally enhance the security of communication. First, a hyperchaotic secure communication scheme applying GFPS of the uncertain Chen hyperchaotic system is proposed. The transmitted information signal is modulated into the parameter of the Chen hyperchaotic system in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical Chen hyperchaotic systems with unknown parameter asymptotically synchronized; thus, the uncertain parameter of the receiver system is identified. The information signal can be recovered accurately by the estimated parameter. Secondly, another secure communication scheme by the coupled GFPS of the Chen hyperchaotic system is introduced. The information signal transmitted can be extracted exactly through simple operation in the receiver. The corresponding theoretical proofs and numerical simulations demonstrate the validity and feasibility of the proposed hyperchaotic secure communication schemes.
MSC:
94A60Cryptography
94A14Modulation and demodulation
37N35Dynamical systems in control
37D45Strange attractors, chaotic dynamics
References:
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, 821-824 (1990)
[2]Chen, G.; Dong, X.: From chaos to order: methodologies, (1998)
[3]Bocaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C.: The synchronization of chaotic systems, Phys. rep. 366, 1-101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[4]Kolumbán, G.; Kennedy, M. P.; Chua, L. O.: The role of synchronization in digital communication using chaos, IEEE trans. Circuits syst. I 44, 927-936 (1997)
[5]Bai, E. W.; Lonngren, K. E.; Ucar, A.: Secure communication via multiple parameter modulation in a delayed chaotic system, Chaos solitons fractals 23, 1071-1076 (2005) · Zbl 1068.94500 · doi:10.1016/j.chaos.2004.06.072
[6]Čelikovský, S.; Chen, G.: Secure synchronization of a class of chaotic systems from a nonlinear observer approach, IEEE trans. Automat. control 50, 76-82 (2005)
[7]Wu, X.; Li, J.: Chaos control and synchronization of a three species food chain model via Holling functional response, Int. J. Comput. math. 87, 199-214 (2010) · Zbl 1179.92068 · doi:10.1080/00207160801993232
[8]Zhou, J.; Er, M. J.: Adaptive output control of a class of uncertain chaotic systems, Systems control lett. 56, 452-460 (2007) · Zbl 1117.93041 · doi:10.1016/j.sysconle.2006.12.002
[9]Wen, G.; Xu, D.: Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos solitons fractals 26, 71-77 (2005) · Zbl 1122.93311 · doi:10.1016/j.chaos.2004.09.117
[10]Yau, H. T.; Kuo, C. L.; Yan, J. J.: Fuzzy sliding mode control for a class of chaos synchronization with uncertainties, Int. J. Nonlinear sci. Numer. simul. 7, 333-338 (2006)
[11]Ge, Z. M.; Chang, C. M.: Generalized synchronization of chaotic systems by pure error dynamics and elaborate Lyapunov function, Nonlinear anal. TMA 71, 5301-5312 (2009) · Zbl 1189.34092 · doi:10.1016/j.na.2009.04.020
[12]Breve, F. A.; Zhao, L.; Quiles, M. G.; Macau, E. E. N.: Chaotic phase synchronization and desynchronization in an oscillator network for object selection, Neural networks 22, 728-737 (2009)
[13]Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems, Phys. rev. Lett. 82, 3042-3045 (1999)
[14]Xu, D.: Control of projective synchronization in chaotic systems, Phys. rev. 63, 27201-27204 (2001)
[15]Xu, D.; Li, Z.; Bishop, S. R.: Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos 11, 439-442 (2001) · Zbl 0996.37075 · doi:10.1063/1.1380370
[16]Xu, D.; Chee, C. Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension, Phys. rev. 66, 046218 (2002)
[17]Li, Z.; Xu, D.: A secure communication scheme using projective chaos synchronization, Chaos solitons fractals 22, 477-481 (2004) · Zbl 1060.93530 · doi:10.1016/j.chaos.2004.02.019
[18]Chee, C. Y.; Xu, D.: Secure digital communication using controlled projective synchronization of chaos, Chaos solitons fractals 23, 1063-1070 (2005) · Zbl 1068.94010 · doi:10.1016/j.chaos.2004.06.017
[19]Wen, G.; Xu, D.: Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos solitons fractals 26, 71-77 (2005) · Zbl 1122.93311 · doi:10.1016/j.chaos.2004.09.117
[20]Yan, J.; Li, C.: Generalized projective synchronization of a unified chaotic system, Chaos solitons fractals 26, 1119-1124 (2005) · Zbl 1073.65147 · doi:10.1016/j.chaos.2005.02.034
[21]Park, J. H.: Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos solitons fractals 34, 1552-1559 (2007) · Zbl 1152.93407 · doi:10.1016/j.chaos.2006.04.047
[22]Chen, Y.; Li, X.: Function projective synchronization between two identical chaotic systems, Int. J. Modern phys. 18, 883-888 (2007) · Zbl 1139.37301 · doi:10.1142/S0129183107010607
[23]Luo, R. Z.: Adaptive function projective synchronization of Rössler hyperchaotic system with uncertain parameters, Phys. lett. 372, 3667-3671 (2008) · Zbl 1220.37025 · doi:10.1016/j.physleta.2008.02.035
[24]Lee, T. H.; Park, J. H.: Adaptive functional projective lag synchronization of a hyperchaotic Rössler system, Chin. phys. Lett. 26, 090507 (2009)
[25]Du, H.; Zeng, Q.; Lü, N.: A general method for modified function projective lag synchronization in chaotic systems, Phys. lett. 374, 1493-1496 (2010)
[26]Du, H.; Zeng, Q.; Wang, C.; Ling, M.: Function projective synchronization in coupled chaotic systems, Nonlinear anal. RWA 11, 705-712 (2010) · Zbl 1181.37039 · doi:10.1016/j.nonrwa.2009.01.016
[27]Tsay, S. C.; Huang, C. K.; Chiang, C. T.: Design the hyperchaotic cryptosystems via the Gerschgorin theorem, Chaos solitons fractals 19, 935-948 (2004) · Zbl 1055.94023 · doi:10.1016/S0960-0779(03)00263-7
[28]Li, C.; Liao, X.; Wong, K.: Lag synchronization of hyperchaos with application to secure communications, Chaos solitons fractals 23, 183-193 (2005) · Zbl 1068.94004 · doi:10.1016/j.chaos.2004.04.025
[29]Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Adaptive synchronization of a hyperchaotic system with uncertain parameter, Chaos solitons fractals 30, 1133-1142 (2006) · Zbl 1142.37325 · doi:10.1016/j.chaos.2005.09.047
[30]Andrievsky, B.: Adaptive synchronization methods for signal transmission on chaotic carriers, Math. comp. 58, 285-293 (2002) · Zbl 0995.65133 · doi:10.1016/S0378-4754(01)00373-1
[31]Chen, G. R.; Ueta, T.: Yet another chaotic attractor, Int. J. Bifurcat. chaos 9, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[32]Li, Y.; Tang, W.; Chen, G.: Generating hyperchaos via state feedback control, Int. J. Bifurcat. chaos 15, 3367-3375 (2005)
[33]Yan, Z.: Controlling hyperchaos in the new hyperchaotic Chen system, Appl. math. Comput. 168, 1239-1250 (2005) · Zbl 1160.93384 · doi:10.1016/j.amc.2004.10.016
[34]Khalil, H. K.: Nonlinear systems, (2002) · Zbl 1003.34002