zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects. (English) Zbl 1204.34072
For a class of complex networks of interacting identical dynamical systems with impulsive effects, a problem of synchronization is studied. The coupling in the networks is considered to be with a time delay such that each element of the ensemble receives retarded signals from other oscillators. The coupling matrix belongs to a class of irreducible matrices with zero row sums and non-negative elements except for the main diagonal. Under further assumptions on the vector fields of the interacting oscillators and the coupling matrix, exponential stability of the synchronized manifold is demonstrated. The latter means that the synchronization errors decay to zero exponentially fast with time. Sufficient conditions for the exponential synchronization are derived by the geometrical decomposition of the network states over the eigenvectors of the coupling matrix and linear matrix inequality methods. Two numerical examples are also presented to illustrate the applicability of the obtained analytical results.
MSC:
34D06Synchronization
34A37Differential equations with impulses
34K20Stability theory of functional-differential equations
34K25Asymptotic theory of functional-differential equations
References:
[1]Strogatz, S. H.: Exploring complex networks, Nature 410, 268-276 (2001)
[2]Watts, D. J.; Strogatz, S. H.: Collective dynamics of ’small-world’ networks, Nature 393, 440-442 (1998)
[3]Pecora, L. M.: Synchronization conditions and desynchronization patterns in coupled limit-cycle and chaotic systems, Phys. rev. E 58, 347-360 (1998)
[4]Pecora, L. M.; Carroll, T.; Johnson, G.; Mar, D.; Fink, K. S.: Synchronization stability in coupled oscillator arrays: solution for arbitrary configuration, Internat. J. Bifur. chaos 10, No. 2, 273-290 (2000) · Zbl 1090.34542 · doi:10.1142/S0218127400000189
[5]Rangarajan, G.; Ding, M. Z.: Stability of synchronized chaos in coupled dynamical systems, Phys. lett. A 296, 204-209 (2002) · Zbl 0994.37026 · doi:10.1016/S0375-9601(02)00051-8
[6]Sorrentino, F.; Bernardo, M.; Garofalo, F.: Synchronizability and synchronization dynamics of weighed and unweighed scale free networks with degree mixing, Internat. J. Bifur. chaos 17, No. 7, 2119-2143 (2007) · Zbl 1144.82352 · doi:10.1142/S021812740701849X
[7]Wang, X.; Chen, G.: Synchronization in small-world dynamical networks, Internat. J. Bifur. chaos 12, 187-192 (2002)
[8]Wang, X.; Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility, IEEE trans. Circuit syst. I 49, 54-62 (2002)
[9]Lü, J.; Yu, X.; Chen, G.: Chaos synchronization of general complex dynamical networks, Physica A 334, 281-302 (2004)
[10]Lü, J.; Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria, IEEE trans. Automat. control 50, No. 6, 841-846 (2005)
[11]Chen, M.: Synchronization in time-varying networks: A matrix measure approach, Phys. rev. E 76, 016104 (2007)
[12]Li, C.; Chen, G.: Synchronization in complex dynamical networks with coupling delays, Physica A 343, 263-278 (2004)
[13]Wu, J.; Jiao, L.: Synchronization in complex delayed dynamical networks with nonsymmetric coupling, Physica A 386, 513-530 (2007)
[14]Earl, M. G.; Strogate, S. H.: Synchronization in oscillator networks with delayed coupling: A stability criterion, Phys. rev. E 67, 036204 (2003)
[15]Buric, N.; Todorovie, K.: Synchronization of noisy delayed feedback systems with delayed coupling, Phys. rev. E 75, 026209 (2007)
[16]Liu, X.; Chen, T.: Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling, Physica A 381, 543-556 (2007)
[17]Wang, Q.; Chen, G.; Lu, Q.; Hao, F.: Novel criteria of synchronization stability in complex networks with coupling delays, Physica A 378, 527-536 (2007)
[18]Li, C.; Sun, W.; Kurths, J.: Synchronization of complex dynamical networks with time delays, Physica A 361, 24-34 (2006)
[19]Lu, J.; Ho, D. W. C.: Local and global synchronization in general complex dynamical networks with delay coupling, Chaos solitons fractals 37, No. 5, 1497-1510 (2008) · Zbl 1142.93426 · doi:10.1016/j.chaos.2006.10.030
[20]Liu, X.; Wang, J.; Huang, L.: Global synchronization for a class of dynamical complex networks, Physica A 386, 82-92 (2007)
[21]Zhou, J.; Chen, T.: Synchronization in general complex delayed dynamical networks, IEEE trans. Circuit syst. I 53, No. 3, 733-744 (2006)
[22]Wu, C. W.; Chua, L. O.: Synchronization in an array of linearly coupled dynamical system, IEEE trans. Cir. syst. I 42, No. 8, 430-447 (1995) · Zbl 0867.93042 · doi:10.1109/81.404047
[23]Cao, J.; Li, P.; Wang, W.: Global synchronization in arrays of delayed neural networks with constant and coupling, Phys. lett. A 353, 865-872 (2006)
[24]Wang, W.; Cao, J.: Synchronization in an array of linearly coupled networks with time-varying, Physica A 366, 197-211 (2006)
[25]Yu, W.; Cao, J.; Lü, J.: Global synchronization of linearly hybrid coupled networks with time-varying delay, SIAM J. Appl. dynam. Syst. 7, No. 1, 108-133 (2008) · Zbl 1161.94011 · doi:10.1137/070679090
[26]Lu, W.; Chen, T.: New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D 213, 214-230 (2006) · Zbl 1105.34031 · doi:10.1016/j.physd.2005.11.009
[27]Lu, W.; Chen, T.; Chen, G.: Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D 221, 118-134 (2006) · Zbl 1111.34056 · doi:10.1016/j.physd.2006.07.020
[28]Wu, W.; Chen, T.: Global synchronization criteria of linearly coupled neural network systems with time-varying coupling, IEEE trans. Neural netw. 19, No. 2, 319-332 (2008)
[29]Yang, Y.; Cao, J.: Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects, Physica A 386, No. 1, 492-502 (2007)
[30]Zhou, J.; Xiang, L.; Liu, Z.: Synchronization in complex delayed dynamical networks with impulsive effects, Physica A 384, No. 2, 684-692 (2007)
[31]Zhu, W.; Xu, D.; Huang, Y.: Global impulsive exponential synchronization of time-delayed coupled chaotic systems, Chaos solitons fractals 35, No. 5, 904-912 (2008) · Zbl 1141.37019 · doi:10.1016/j.chaos.2006.05.078
[32]Li, P.; Cao, J.; Wang, Z.: Robust impulsive synchronization of coupled delayed neural networks with uncertainties, Physica A 373, No. 1, 261-272 (2007)
[33]Li, K.; Lai, C. H.: Adaptive-impulsive synchronization of uncertain complex dynamical networks, Phys. lett. A 372, 1601-1606 (2008) · Zbl 1217.05210 · doi:10.1016/j.physleta.2007.10.020
[34]Cai, S.; Zhou, J.; Xiang, L.; Liu, Z.: Robust impulsive synchronization of complex delayed dynamical networks, Phys. lett. A 372, 4990-4995 (2008) · Zbl 1221.34075 · doi:10.1016/j.physleta.2008.05.077